Home
Class 12
MATHS
The vertices of a triangle are A(x1, x1t...

The vertices of a triangle are `A(x_1, x_1tantheta_1),B(x_2, x_2tantheta_2)a n dC(x_3, x_3tantheta_3)dot` if the circumcentre of `"Delta"A B C` coincides with the origin and `H( x , y )` is the orthocentre, show that ` y/( x )=(sintheta_1+s intheta_2+sintheta_3)/(costheta_1+costheta_2+costheta_3)`

Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos

Similar Questions

Explore conceptually related problems

The vertices of a triangle are A(x_1, x_1tantheta_1),B(x_2, x_2tantheta_2)a n dC(x_3, x_3tantheta_3)dot if the circumcentre of DeltaABC coincides with the origin and H( barx , bary ) is the orthocentre, show that bary/( barx )=(sintheta1+sintheta_2+sintheta_3)/(costheta_1+costheta_2+costheta_3)

If sintheta_1+sintheta_2+sintheta_3=3," then "costheta_1+costheta_2+costheta_3 is equal to

Prove that tantheta=(sintheta-2sin^3theta)/(2cos^3theta-costheta)

Prove that : (sintheta-2sin^(3)theta)/(2cos^(3)theta-costheta)-tantheta

Prove that: (1+sintheta-costheta)/(1+sintheta+costheta)=tantheta/2

Prove that : (cos^(2)theta)/(1-tantheta)+(sin^(3)theta)/(sintheta-costheta)=1+sinthetacostheta

If 3costheta-4sintheta=2costheta+sintheta , find tantheta .

If sintheta=3/5 , evaluate (costheta-1/(tantheta))/(2cottheta)

If tantheta=(20)/(21) , show that (1-sintheta+costheta)/(1+sintheta+costheta)=3/7

If 3tantheta=4 , find the value of (4costheta-sintheta)/(2costheta+sintheta)