Home
Class 12
MATHS
A point moves so that the sum of its dis...

A point moves so that the sum of its distances from `(a e ,0)a n d(-a e ,0)` is `2a ,` prove that the equation to its locus is `(x^2)/(a^2)+(y^2)/(b^2)=1` , where `b^2=a^2(1-e^2)dot`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos

Similar Questions

Explore conceptually related problems

If the sum of the distances of a moving point from two fixed points (ae, 0) and (-ae, 0) be 2a , prove that the locus of the point is: x^2/a^2+ y^2/(a^2 (1-e^2) =1

A point P(x, y) moves so that the sum of its distances from the points S(4, 2) and S^(') (-2, 2) is 8. Find the equation of its locus and show that it is an ellipse.

Find the locus of a point such that the sum of its distances from the points (0,2)a n d(0,-2) is 6.

Find the locus of a point such that the sum of its distances from the points (0,2)a n d(0,-2) is 6.

Find (d^2y)/(dx^2),"where" y=log((x^2)/(e^2))dot

A point moves so that the distance between the foot of perpendiculars from it on the lines a x^2+2hx y+b y^2=0 is a constant 2d . Show that the equation to its locus is (x^2+y^2)(h^2-a b)=d^2{(a-b)^2+4h^2}dot

Show that the equation of the locus of a point which moves so that the sum of its distance from two given points (k, 0) and (-k, 0) is equal to 2a is : x^2/a^2 + y^2/(a^2 - k^2) =1

Find the locus of a point such that the sum of its distances from the points (0, 2) and (0, -2) is 6.

A point P(x,y) moves so that the sum of its distances from point (4,2) and (-2,2) is 8. If the locus of P is an ellipse then its length of semi-major axis is

If e is eccentricity of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 (where,a lt b), then