Home
Class 12
MATHS
If the points (-2, 0), (-1,(1)/(sqrt(3))...

If the points `(-2, 0), (-1,(1)/(sqrt(3)))` and `(cos theta, sin theta)` are collinear, then the number of value of `theta in [0, 2pi]` is

Text Solution

AI Generated Solution

The correct Answer is:
To determine the number of values of \( \theta \) in the interval \([0, 2\pi]\) such that the points \((-2, 0)\), \((-1, \frac{1}{\sqrt{3}})\), and \((\cos \theta, \sin \theta)\) are collinear, we can follow these steps: ### Step 1: Set up the condition for collinearity The points are collinear if the area of the triangle formed by them is zero. The area \( A \) of a triangle given by vertices \((x_1, y_1)\), \((x_2, y_2)\), \((x_3, y_3)\) can be calculated using the determinant formula: \[ A = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] For our points, we have: - \((x_1, y_1) = (-2, 0)\) - \((x_2, y_2) = (-1, \frac{1}{\sqrt{3}})\) - \((x_3, y_3) = (\cos \theta, \sin \theta)\) Setting the area to zero gives us: \[ -2\left(\frac{1}{\sqrt{3}} - \sin \theta\right) + (-1)(\sin \theta - 0) + \cos \theta\left(0 - \frac{1}{\sqrt{3}}\right) = 0 \] ### Step 2: Simplify the equation Expanding and simplifying the equation: \[ -2\left(\frac{1}{\sqrt{3}} - \sin \theta\right) - \sin \theta - \frac{\cos \theta}{\sqrt{3}} = 0 \] This simplifies to: \[ -2\frac{1}{\sqrt{3}} + 2\sin \theta - \sin \theta - \frac{\cos \theta}{\sqrt{3}} = 0 \] Combining like terms: \[ \sin \theta - 2\frac{1}{\sqrt{3}} - \frac{\cos \theta}{\sqrt{3}} = 0 \] ### Step 3: Rearranging the equation Rearranging gives: \[ \sin \theta = 2\frac{1}{\sqrt{3}} + \frac{\cos \theta}{\sqrt{3}} \] ### Step 4: Multiply through by \(\sqrt{3}\) To eliminate the fraction, multiply the entire equation by \(\sqrt{3}\): \[ \sqrt{3} \sin \theta = 2 + \cos \theta \] ### Step 5: Use trigonometric identities Using the sine subtraction formula, we can express this equation as: \[ \sqrt{3} \sin \theta - \cos \theta = 2 \] This can be rewritten using the sine subtraction identity: \[ \sin\left(\theta - \frac{\pi}{6}\right) = 1 \] ### Step 6: Solve for \(\theta\) The sine function equals 1 at: \[ \theta - \frac{\pi}{6} = \frac{\pi}{2} + 2k\pi \quad (k \in \mathbb{Z}) \] Thus: \[ \theta = \frac{\pi}{2} + \frac{\pi}{6} + 2k\pi \] Calculating this gives: \[ \theta = \frac{3\pi}{6} + \frac{\pi}{6} = \frac{4\pi}{6} = \frac{2\pi}{3} + 2k\pi \] ### Step 7: Find values in the interval \([0, 2\pi]\) For \( k = 0 \): \[ \theta = \frac{2\pi}{3} \] For \( k = 1 \): \[ \theta = \frac{2\pi}{3} + 2\pi = \frac{8\pi}{3} \quad \text{(not in the interval)} \] Thus, the only valid solution in the interval \([0, 2\pi]\) is: \[ \theta = \frac{2\pi}{3} \] ### Conclusion The number of values of \( \theta \) in the interval \([0, 2\pi]\) for which the points are collinear is **1**. ---
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos

Similar Questions

Explore conceptually related problems

If |(cos theta,-1,1),(cos2 theta,4,3),(2,7,7)|=0 , then the number of values of theta in [0, 1pi] is

If the points (1,1):(0,sec^2theta); and (cos e c^2theta,0) are collinear, then find the value of theta

If the points (1,1):(0,sec^2theta); and (cos e c^2theta,0) are collinear, then find the value of theta

If the system of linear equations {:((cos theta)x + (sin theta) y + cos theta=0),((sin theta)x+(cos theta)y + sin theta=0),((cos theta)x + (sin theta)y -cos theta=0):} is consistent , then the number of possible values of theta, theta in [0,2pi] is :

If sin theta =sqrt(3) cos theta, -pi lt theta lt 0 , then the value of theta is

cos theta sqrt(1-sin^(2)theta)=

(i) The points (-1, 0), (4, -2) and (cos 2theta, sin 2 theta) are collinear (ii) The points (-1,0), (4, -2) and ((1-tan^(2)theta)/(1+tan^(2)theta),(2tan theta)/(1+tan^(2)theta)) are collinear

If (cos^(3) theta )/( (1- sin theta ))+( sin^(3) theta )/( (1+ cos theta ))=1+ cos theta , then number of possible values of theta is ( where theta in [0,2pi] )

If pi < theta < 2pi and z=1+cos theta + i sin theta , then write the value of |z|

If theta in (pi//4, pi//2) and sum_(n=1)^(oo)(1)/(tan^(n)theta)=sin theta + cos theta , then the value of tan theta is