Home
Class 12
MATHS
Show that the following points are the v...

Show that the following points are the vertices of a rectangle.
(i) A(-4, -1), B(-2, -4), C(4, 0) and D(2, 3)
(ii) A(2, -2), B(14, 10), C(11, 13) and D(-1, 1)
(iii) A(0, -4), B(6, 2), C(3, 5) and D(-3, -1)

A

parallelogram

B

rectangle

C

rhombus

D

square

Text Solution

AI Generated Solution

The correct Answer is:
To show that the given points are the vertices of a rectangle, we need to verify two main properties of a rectangle: 1. Opposite sides are equal in length. 2. The diagonals are equal in length. We will use the distance formula to calculate the lengths of the sides and diagonals. The distance formula between two points \((x_1, y_1)\) and \((x_2, y_2)\) is given by: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] ### Part (i): Points A(-4, -1), B(-2, -4), C(4, 0), D(2, 3) 1. **Calculate the distances:** - **AB:** \[ AB = \sqrt{(-2 - (-4))^2 + (-4 - (-1))^2} = \sqrt{(2)^2 + (-3)^2} = \sqrt{4 + 9} = \sqrt{13} \] - **BC:** \[ BC = \sqrt{(4 - (-2))^2 + (0 - (-4))^2} = \sqrt{(6)^2 + (4)^2} = \sqrt{36 + 16} = \sqrt{52} \] - **CD:** \[ CD = \sqrt{(2 - 4)^2 + (3 - 0)^2} = \sqrt{(-2)^2 + (3)^2} = \sqrt{4 + 9} = \sqrt{13} \] - **DA:** \[ DA = \sqrt{(-4 - 2)^2 + (-1 - 3)^2} = \sqrt{(-6)^2 + (-4)^2} = \sqrt{36 + 16} = \sqrt{52} \] 2. **Check the diagonals:** - **AC:** \[ AC = \sqrt{(4 - (-4))^2 + (0 - (-1))^2} = \sqrt{(8)^2 + (1)^2} = \sqrt{64 + 1} = \sqrt{65} \] - **BD:** \[ BD = \sqrt{(2 - (-2))^2 + (3 - (-4))^2} = \sqrt{(4)^2 + (7)^2} = \sqrt{16 + 49} = \sqrt{65} \] 3. **Conclusion:** - Opposite sides are equal: \(AB = CD\) and \(BC = DA\). - Diagonals are equal: \(AC = BD\). - Therefore, points A, B, C, and D form a rectangle. ### Part (ii): Points A(2, -2), B(14, 10), C(11, 13), D(-1, 1) 1. **Calculate the distances:** - **AB:** \[ AB = \sqrt{(14 - 2)^2 + (10 - (-2))^2} = \sqrt{(12)^2 + (12)^2} = \sqrt{144 + 144} = 12\sqrt{2} \] - **BC:** \[ BC = \sqrt{(11 - 14)^2 + (13 - 10)^2} = \sqrt{(-3)^2 + (3)^2} = \sqrt{9 + 9} = 3\sqrt{2} \] - **CD:** \[ CD = \sqrt{(-1 - 11)^2 + (1 - 13)^2} = \sqrt{(-12)^2 + (-12)^2} = \sqrt{144 + 144} = 12\sqrt{2} \] - **DA:** \[ DA = \sqrt{(2 - (-1))^2 + (-2 - 1)^2} = \sqrt{(3)^2 + (-3)^2} = \sqrt{9 + 9} = 3\sqrt{2} \] 2. **Check the diagonals:** - **AC:** \[ AC = \sqrt{(11 - 2)^2 + (13 - (-2))^2} = \sqrt{(9)^2 + (15)^2} = \sqrt{81 + 225} = \sqrt{306} \] - **BD:** \[ BD = \sqrt{(-1 - 14)^2 + (1 - 10)^2} = \sqrt{(-15)^2 + (-9)^2} = \sqrt{225 + 81} = \sqrt{306} \] 3. **Conclusion:** - Opposite sides are equal: \(AB = CD\) and \(BC = DA\). - Diagonals are equal: \(AC = BD\). - Therefore, points A, B, C, and D form a rectangle. ### Part (iii): Points A(0, -4), B(6, 2), C(3, 5), D(-3, -1) 1. **Calculate the distances:** - **AB:** \[ AB = \sqrt{(6 - 0)^2 + (2 - (-4))^2} = \sqrt{(6)^2 + (6)^2} = \sqrt{36 + 36} = 6\sqrt{2} \] - **BC:** \[ BC = \sqrt{(3 - 6)^2 + (5 - 2)^2} = \sqrt{(-3)^2 + (3)^2} = \sqrt{9 + 9} = 3\sqrt{2} \] - **CD:** \[ CD = \sqrt{(-3 - 3)^2 + (-1 - 5)^2} = \sqrt{(-6)^2 + (-6)^2} = \sqrt{36 + 36} = 6\sqrt{2} \] - **DA:** \[ DA = \sqrt{(0 - (-3))^2 + (-4 - (-1))^2} = \sqrt{(3)^2 + (-3)^2} = \sqrt{9 + 9} = 3\sqrt{2} \] 2. **Check the diagonals:** - **AC:** \[ AC = \sqrt{(3 - 0)^2 + (5 - (-4))^2} = \sqrt{(3)^2 + (9)^2} = \sqrt{9 + 81} = \sqrt{90} \] - **BD:** \[ BD = \sqrt{(-3 - 6)^2 + (-1 - 2)^2} = \sqrt{(-9)^2 + (-3)^2} = \sqrt{81 + 9} = \sqrt{90} \] 3. **Conclusion:** - Opposite sides are equal: \(AB = CD\) and \(BC = DA\). - Diagonals are equal: \(AC = BD\). - Therefore, points A, B, C, and D form a rectangle.
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|5 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|5 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|15 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos

Similar Questions

Explore conceptually related problems

Show that the following points are the vertices of a rectangle : (i) A(4, 2), B(0, -4), C(-3, -2), D(1, 4) (ii) A(1,-1), B(-2, 2), C(4, 8), D(7, 5)

Name the quadrilateral formed, if any, by the following points, and give reasons for your answers: A(-1,\ -2),\ \ B(1,\ 0),\ \ C(-1,\ 2),\ \ D(-3,\ 0) (ii) A(-3,\ 5),\ \ B(3,\ 1),\ \ C(0,\ 3),\ \ D(-1,\ -4) (iii) A(4,\ 5),\ \ B(7,\ 6),\ \ C(4,\ 3),\ \ D(1,\ 2)

The area of the quadrilateral ABCD where A (0,4,1) , B(2,3,-1), c (4,5,0)and D(2,6,2) is to :

Show that the points A(2,3,5),B(-4,7,-7),C(-2,1,-10) and D(4,-3,2) are the vertices of a rectangle.

Show that the DeltaABC with vertices A ( 0,4, 1) , B ( 2, 3, -1) and C ( 4,5,0) is right angled.

Show that the points A(3,5),B(6,0), C(1,-3) and D(-2,2) are the vertices of a square ABCD.

Find the area of a rhombus ABCD whose vertices are A(3,0) ,B(4,5),C(-1,4) and D(-2,-1)

Taking 0.5 cm as 1 unit, plot the following points on the graph paper A(1,3), B(-3,-1),C(1,-4),D(-2,3). E(0,-8) and F(1,0).

Show that the points A(2, 1), B(0,3), C(-2, 1) and D(0, -1) are the vertices of a square.

Show that the point A(1,-1,3), B(2,-4,5) and C(5,-13,11) are collinear.