Home
Class 12
MATHS
lim(t to0)(1-(1+t)^(t))/(In (1+t)-t) is ...

`lim_(t to0)(1-(1+t)^(t))/(In (1+t)-t)` is equal to

A

`1/2`

B

`-1/2`

C

`2`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{t \to 0} \frac{1 - (1+t)^t}{\ln(1+t) - t} \), we will follow these steps: ### Step 1: Substitute \( t = 0 \) First, we substitute \( t = 0 \) into the expression to check if we get an indeterminate form. \[ \text{Numerator: } 1 - (1+0)^0 = 1 - 1 = 0 \] \[ \text{Denominator: } \ln(1+0) - 0 = 0 - 0 = 0 \] Since both the numerator and denominator approach 0, we have the indeterminate form \( \frac{0}{0} \). ### Step 2: Use Taylor Series Expansion To resolve this indeterminate form, we can use the Taylor series expansions for \( (1+t)^t \) and \( \ln(1+t) \). 1. **Expansion of \( (1+t)^t \)**: Using the expansion for \( (1+x)^n \): \[ (1+t)^t = 1 + t \cdot 1 + \frac{t(t-1)}{2} + O(t^3) = 1 + t + \frac{t^2}{2} + O(t^3) \] Therefore, \[ 1 - (1+t)^t = 1 - \left(1 + t + \frac{t^2}{2} + O(t^3)\right) = -t - \frac{t^2}{2} + O(t^3) \] 2. **Expansion of \( \ln(1+t) \)**: The Taylor series for \( \ln(1+x) \) is: \[ \ln(1+t) = t - \frac{t^2}{2} + \frac{t^3}{3} - O(t^4) \] Thus, \[ \ln(1+t) - t = -\frac{t^2}{2} + \frac{t^3}{3} - O(t^4) \] ### Step 3: Substitute the Expansions into the Limit Now we substitute these expansions into our limit: \[ \lim_{t \to 0} \frac{-t - \frac{t^2}{2} + O(t^3)}{-\frac{t^2}{2} + \frac{t^3}{3} - O(t^4)} \] ### Step 4: Simplify the Expression As \( t \) approaches 0, we can ignore higher-order terms: \[ \lim_{t \to 0} \frac{-t - \frac{t^2}{2}}{-\frac{t^2}{2}} = \lim_{t \to 0} \frac{-t(1 + \frac{t}{2})}{-\frac{t^2}{2}} = \lim_{t \to 0} \frac{2(1 + \frac{t}{2})}{t} = \lim_{t \to 0} \frac{2 + t}{t} = \lim_{t \to 0} \left( \frac{2}{t} + 1 \right) \] ### Step 5: Evaluate the Limit As \( t \to 0 \), the term \( \frac{2}{t} \) goes to infinity, which indicates that we need to be careful with our earlier steps. We should focus on the leading terms: \[ \lim_{t \to 0} \frac{-t}{-\frac{t^2}{2}} = \lim_{t \to 0} \frac{2t}{t^2} = \lim_{t \to 0} \frac{2}{t} = 2 \] ### Final Answer Thus, the limit is: \[ \lim_{t \to 0} \frac{1 - (1+t)^t}{\ln(1+t) - t} = 2 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value of lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r)) is equal to

lim_(x to 0)(int_(0)^(x^(2))(tan^(-1)t)dt)/(int_(0)^(x^(2))sin sqrt(t)dt) is equal to :

lim_(x rarr 0) (int_(0)^(x) t tan(5t)dt)/(x^(3)) is equal to :

The value of int_(1//e)^(tanx)(tdt)/(1+t^(2))+int_(1/e)^(cotx)(dt)/(t(1+t^(2))) is equal to

The value of lim_(xto0)(1)/(x) int_(0)^(x)(1+ sin 2t)^(1/t) dt equals :

lim_(x rarr infty) (x^(3) int_(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) dt) is equal to

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

The coefficient of t^50 in (1+t)^41 (1-t+t^2)^40 is equal to

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=int_(0)^(oo)(dt)/((1+t^(2))(1+t^(2017))) , then (3x)/(pi) is equal to

ARIHANT MATHS ENGLISH-LIMITS-Exercise (Single Option Correct Type Questions)
  1. lim(xto0)(sin(picos^(2)(tan(sinx))))/(x^(2)) is equal to

    Text Solution

    |

  2. lim(t to0)(1-(1+t)^(t))/(In (1+t)-t) is equal to

    Text Solution

    |

  3. If I(1)=lim(xto oo)(tan^(-1)pi x- tan^(-1)x)cosx and I(2)=lim(xto0)(ta...

    Text Solution

    |

  4. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)...

    Text Solution

    |

  5. lim (xto0) (""^(3)sqrt(1+sin ^(2)x )- ""^(4) sqrt(1-2 tan x))/(sin x+ ...

    Text Solution

    |

  6. If x(n+1)=sqrt((1+xn)/2) and |x0|lt1 , n in W then lim(n->oo)sqrt(1-x...

    Text Solution

    |

  7. For n in N, let f(n) (x) = tan ""(x)/(2) (1+ sec x ) (1+ sec 2x) (1+ s...

    Text Solution

    |

  8. Let f(x) be a real valued function defined for all xge1, satistying f(...

    Text Solution

    |

  9. The quadratic equation whose roots are the minimum value of sin^(2)the...

    Text Solution

    |

  10. If x1=sqrt(3) and x(n+1)=(xn)/(1+sqrt(1+x n^2)),AA n in N then lim(n...

    Text Solution

    |

  11. lim(xtoa^(-))(sqrt(x-b)-sqrt(a-b))/((x^(2)-a^(2))),(agtb) is

    Text Solution

    |

  12. lim(ntooo)(sin^(n)1+cos^(n)1)^(n) is equal to

    Text Solution

    |

  13. The value of \lim{n \to \infty } sum(k=1)^n (n-k)/(n^2) cos((4k)/n) eq...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. int(-1)^(2)[([x])/(1+x^(2))]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  16. If alpha and beta are roots of x^(2)-(sqrt(1-cos 2 theta))x+theta=0, w...

    Text Solution

    |

  17. If f(x)=1/3(f(x+1)+5/(f(x+2))) and f(x)gt0,AA x epsilonR, then lim(xto...

    Text Solution

    |

  18. Let f:(1,2)vecR satisfies the inequality (cos(2x-4)-33)/2ltf(x)lt(x^2|...

    Text Solution

    |

  19. Let f(x) be polynomial of degree 4 with roots 1,2,3,4 and leading coef...

    Text Solution

    |

  20. lim x→π/4 (4sqrt(2)-(cosx+sinx)^5)/(1−sin2x) is equal to

    Text Solution

    |