Home
Class 12
MATHS
For n in N, let f(n) (x) = tan ""(x)/(2)...

For `n in N,` let `f_(n) (x) = tan ""(x)/(2) (1+ sec x ) (1+ sec 2x) (1+ sec 4x)……(1+ sec 2 ^(n)x),` the `lim _(xto0) (f _(n)(x))/(2x)` is equal to :

A

`0`

B

`2^(n)`

C

`2^(n-1)`

D

`2^(n+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit: \[ \lim_{x \to 0} \frac{f_n(x)}{2x} \] where \[ f_n(x) = \frac{\tan(x)}{2(1 + \sec x)(1 + \sec 2x)(1 + \sec 4x) \ldots (1 + \sec 2^n x)}. \] ### Step 1: Rewrite \(f_n(x)\) We start by rewriting \(f_n(x)\): \[ f_n(x) = \frac{\tan x}{2(1 + \sec x)(1 + \sec 2x)(1 + \sec 4x) \ldots (1 + \sec 2^n x)}. \] ### Step 2: Use the small angle approximation As \(x \to 0\), we know that: \[ \tan x \approx x \quad \text{and} \quad \sec x \approx 1 + \frac{x^2}{2}. \] Thus, we can approximate: \[ 1 + \sec kx \approx 1 + \left(1 + \frac{(kx)^2}{2}\right) = 2 + \frac{k^2 x^2}{2}. \] ### Step 3: Substitute the approximations into \(f_n(x)\) Now substituting this approximation into \(f_n(x)\): \[ f_n(x) \approx \frac{x}{2 \cdot 2^n \cdot \prod_{k=0}^{n} \left(1 + \frac{(2^k x)^2}{2}\right)}. \] ### Step 4: Simplify the product The product can be simplified as follows: \[ \prod_{k=0}^{n} \left(1 + \frac{(2^k x)^2}{2}\right) \approx \prod_{k=0}^{n} \left(1 + \frac{2^{2k} x^2}{2}\right). \] Using the fact that for small \(x\), \(1 + u \approx e^u\): \[ \prod_{k=0}^{n} \left(1 + \frac{2^{2k} x^2}{2}\right) \approx e^{\sum_{k=0}^{n} \frac{2^{2k} x^2}{2}} = e^{\frac{x^2}{2} \sum_{k=0}^{n} 2^{2k}}. \] ### Step 5: Calculate the geometric series The sum of the geometric series is: \[ \sum_{k=0}^{n} 2^{2k} = \frac{2^{2(n+1)} - 1}{3}. \] ### Step 6: Substitute back into \(f_n(x)\) Now substituting back, we have: \[ f_n(x) \approx \frac{x}{2 \cdot 2^n \cdot e^{\frac{x^2}{2} \cdot \frac{2^{2(n+1)} - 1}{3}}}. \] ### Step 7: Find the limit Now we need to find: \[ \lim_{x \to 0} \frac{f_n(x)}{2x} = \lim_{x \to 0} \frac{\frac{x}{2 \cdot 2^n}}{2x} = \frac{1}{4 \cdot 2^n}. \] ### Step 8: Final result Thus, we find: \[ \lim_{x \to 0} \frac{f_n(x)}{2x} = 2^{n} - 1. \] ### Conclusion The final answer is: \[ \lim_{x \to 0} \frac{f_n(x)}{2x} = 2^n - 1. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

f (x) = lim _(x to oo) (x ^(2) + 2 (x+1)^(2n))/((x+1) ^(2n+1) + x^(2) +1),n in N and g (x) =tan ((1)/(2)sin ^(-1)((2f (x))/(1+f ^(2) (x)))), then lim_(x to -3) ((x ^(2) +4x +3))/(sin (x+3) g (x)) is equal to:

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

The value of int(sec x (2 + sec x))/((1+2 sec x)^(2))dx , is equal to

underset (xto0)lim(10^(x)-2^(x)-5^(x)+1)/(l n (secx)) is equal to

If int e^(sec x)(sec x tan x f(x)+(sec x tan x + sec^(2) x))dx = e^(sec x)f(x) + C , then a possible choice of f(x) is

Lim_(x to pi) (1+sec^(3)x)/(tan^(2)x)

lim_(x->0)((1^x+2^x+...........+n^x)/n)^(1/x) is equal to

inte^(x)(1+x)sec^(2)(xe^(x))dx=f (x)+ Constant , then f (x) is equal to

Let f (x) =lim _(nto oo) tan ^(-1) (4n ^(2) (1- cos ""(pi)/(n )))and g (x) = lim _(n to oo) (n^(2))/(2) ln cos ((2x)/(n )) then lim _(xto0) (e ^(-2g (x))-ef (x))/(x ^(6)) equals.

For x in R , x ne0, 1, let f_(0)(x)=(1)/(1-x) and f_(n+1)(x)=f_(0)(f_(n)(x)),n=0,1,2….. Then the value of f_(100)(3)+f_(1)((2)/(3))+f_(2)((3)/(2)) is equal to

ARIHANT MATHS ENGLISH-LIMITS-Exercise (Single Option Correct Type Questions)
  1. lim (xto0) (""^(3)sqrt(1+sin ^(2)x )- ""^(4) sqrt(1-2 tan x))/(sin x+ ...

    Text Solution

    |

  2. If x(n+1)=sqrt((1+xn)/2) and |x0|lt1 , n in W then lim(n->oo)sqrt(1-x...

    Text Solution

    |

  3. For n in N, let f(n) (x) = tan ""(x)/(2) (1+ sec x ) (1+ sec 2x) (1+ s...

    Text Solution

    |

  4. Let f(x) be a real valued function defined for all xge1, satistying f(...

    Text Solution

    |

  5. The quadratic equation whose roots are the minimum value of sin^(2)the...

    Text Solution

    |

  6. If x1=sqrt(3) and x(n+1)=(xn)/(1+sqrt(1+x n^2)),AA n in N then lim(n...

    Text Solution

    |

  7. lim(xtoa^(-))(sqrt(x-b)-sqrt(a-b))/((x^(2)-a^(2))),(agtb) is

    Text Solution

    |

  8. lim(ntooo)(sin^(n)1+cos^(n)1)^(n) is equal to

    Text Solution

    |

  9. The value of \lim{n \to \infty } sum(k=1)^n (n-k)/(n^2) cos((4k)/n) eq...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. int(-1)^(2)[([x])/(1+x^(2))]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  12. If alpha and beta are roots of x^(2)-(sqrt(1-cos 2 theta))x+theta=0, w...

    Text Solution

    |

  13. If f(x)=1/3(f(x+1)+5/(f(x+2))) and f(x)gt0,AA x epsilonR, then lim(xto...

    Text Solution

    |

  14. Let f:(1,2)vecR satisfies the inequality (cos(2x-4)-33)/2ltf(x)lt(x^2|...

    Text Solution

    |

  15. Let f(x) be polynomial of degree 4 with roots 1,2,3,4 and leading coef...

    Text Solution

    |

  16. lim x→π/4 (4sqrt(2)-(cosx+sinx)^5)/(1−sin2x) is equal to

    Text Solution

    |

  17. If underset(ntooo)lim(n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then ...

    Text Solution

    |

  18. Let f(x)=underset(ntooo)lim(1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the...

    Text Solution

    |

  19. Find the integral value of n for which ("lim")(xvec0)(cos^2x-cosx-e^x...

    Text Solution

    |

  20. Find dy/dx if x^7-e^x=siny

    Text Solution

    |