Home
Class 12
MATHS
The quadratic equation whose roots are t...

The quadratic equation whose roots are the minimum value of `sin^(2)theta-sin theta+1/2` and `lim_(xto oo)sqrt((x+1)(x+2))-x` is

A

(a)`3x^(2)-7x+3=0`

B

(b)`8x^(2)-14x+3=0`

C

(c)`x^(2)-7x+3=0`

D

(d)`2x^(2)-8x+3=0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the quadratic equation whose roots are the minimum value of \( \sin^2 \theta - \sin \theta + \frac{1}{2} \) and \( \lim_{x \to \infty} \sqrt{(x+1)(x+2)} - x \), we will follow these steps: ### Step 1: Find the minimum value of \( \sin^2 \theta - \sin \theta + \frac{1}{2} \) Let \( y = \sin^2 \theta - \sin \theta + \frac{1}{2} \). 1. Rewrite \( y \) in terms of \( a = \sin \theta \): \[ y = a^2 - a + \frac{1}{2} \] 2. To find the minimum value, differentiate \( y \) with respect to \( a \): \[ \frac{dy}{da} = 2a - 1 \] 3. Set the derivative equal to zero to find critical points: \[ 2a - 1 = 0 \implies a = \frac{1}{2} \] 4. Substitute \( a = \frac{1}{2} \) back into the equation for \( y \): \[ y = \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right) + \frac{1}{2} = \frac{1}{4} - \frac{1}{2} + \frac{1}{2} = \frac{1}{4} \] Thus, the minimum value \( \alpha = \frac{1}{4} \). ### Step 2: Find the limit \( \lim_{x \to \infty} \sqrt{(x+1)(x+2)} - x \) 1. Rewrite the limit: \[ \lim_{x \to \infty} \left( \sqrt{(x+1)(x+2)} - x \right) \] 2. Simplify the expression inside the limit: \[ \sqrt{(x+1)(x+2)} = \sqrt{x^2 + 3x + 2} \] 3. Rationalize the expression: \[ \lim_{x \to \infty} \frac{(\sqrt{(x+1)(x+2)} - x)(\sqrt{(x+1)(x+2)} + x)}{\sqrt{(x+1)(x+2)} + x} \] This gives: \[ = \lim_{x \to \infty} \frac{x^2 + 3x + 2 - x^2}{\sqrt{(x+1)(x+2)} + x} = \lim_{x \to \infty} \frac{3x + 2}{\sqrt{(x+1)(x+2)} + x} \] 4. As \( x \to \infty \), \( \sqrt{(x+1)(x+2)} \approx x \): \[ = \lim_{x \to \infty} \frac{3x + 2}{2x} = \frac{3}{2} \] Thus, \( \beta = \frac{3}{2} \). ### Step 3: Form the quadratic equation The quadratic equation can be formed using the roots \( \alpha \) and \( \beta \): 1. The general form of the quadratic equation is: \[ x^2 - (\alpha + \beta)x + \alpha \beta = 0 \] 2. Substitute \( \alpha = \frac{1}{4} \) and \( \beta = \frac{3}{2} \): \[ \alpha + \beta = \frac{1}{4} + \frac{3}{2} = \frac{1}{4} + \frac{6}{4} = \frac{7}{4} \] \[ \alpha \beta = \frac{1}{4} \cdot \frac{3}{2} = \frac{3}{8} \] 3. The quadratic equation becomes: \[ x^2 - \frac{7}{4}x + \frac{3}{8} = 0 \] 4. To eliminate the fractions, multiply through by 8: \[ 8x^2 - 14x + 3 = 0 \] ### Final Answer The quadratic equation whose roots are the minimum value of \( \sin^2 \theta - \sin \theta + \frac{1}{2} \) and \( \lim_{x \to \infty} \sqrt{(x+1)(x+2)} - x \) is: \[ 8x^2 - 14x + 3 = 0 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

lim_(xto oo)(x/(1+x))^(x) is

Minimum value of 4x^2-4x|sin theta|-cos^2 theta is equal

Find the sum sintheta+x sin 2theta+x^2sin 3theta+… to oo

The value of lim_(xto oo)(x+2)tan^(-1)(x+2)-(xtan^(-1)x) is

Find the minimum value of 2costheta+1/sin theta+sqrt2tantheta , where theta is acute angle.

Evaluate lim_(xto oo)e^(x)sin (d//e^(x)) .

The value of lim_(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) equals

The quadratic equation (1 - sintheta) x^(2)+ 2(1 - sin theta) x - 3 sin theta = 0 has both roots complex for all theta lying in the interval

Prove that: sin theta- 1/2 sin 2 theta+1/3 sin 3theta-…to oo = theta/2

The value of lim_(xto2) (sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)" is "

ARIHANT MATHS ENGLISH-LIMITS-Exercise (Single Option Correct Type Questions)
  1. For n in N, let f(n) (x) = tan ""(x)/(2) (1+ sec x ) (1+ sec 2x) (1+ s...

    Text Solution

    |

  2. Let f(x) be a real valued function defined for all xge1, satistying f(...

    Text Solution

    |

  3. The quadratic equation whose roots are the minimum value of sin^(2)the...

    Text Solution

    |

  4. If x1=sqrt(3) and x(n+1)=(xn)/(1+sqrt(1+x n^2)),AA n in N then lim(n...

    Text Solution

    |

  5. lim(xtoa^(-))(sqrt(x-b)-sqrt(a-b))/((x^(2)-a^(2))),(agtb) is

    Text Solution

    |

  6. lim(ntooo)(sin^(n)1+cos^(n)1)^(n) is equal to

    Text Solution

    |

  7. The value of \lim{n \to \infty } sum(k=1)^n (n-k)/(n^2) cos((4k)/n) eq...

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. int(-1)^(2)[([x])/(1+x^(2))]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  10. If alpha and beta are roots of x^(2)-(sqrt(1-cos 2 theta))x+theta=0, w...

    Text Solution

    |

  11. If f(x)=1/3(f(x+1)+5/(f(x+2))) and f(x)gt0,AA x epsilonR, then lim(xto...

    Text Solution

    |

  12. Let f:(1,2)vecR satisfies the inequality (cos(2x-4)-33)/2ltf(x)lt(x^2|...

    Text Solution

    |

  13. Let f(x) be polynomial of degree 4 with roots 1,2,3,4 and leading coef...

    Text Solution

    |

  14. lim x→π/4 (4sqrt(2)-(cosx+sinx)^5)/(1−sin2x) is equal to

    Text Solution

    |

  15. If underset(ntooo)lim(n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then ...

    Text Solution

    |

  16. Let f(x)=underset(ntooo)lim(1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the...

    Text Solution

    |

  17. Find the integral value of n for which ("lim")(xvec0)(cos^2x-cosx-e^x...

    Text Solution

    |

  18. Find dy/dx if x^7-e^x=siny

    Text Solution

    |

  19. underset(xto(pi)/(2))(lim)([(x)/(2)])/(log(e)(sinx))([.] denotes great...

    Text Solution

    |

  20. Let a1=1, an=n(a(n-1)+1) for n=2,3,... where Pn=(1+1/a1)(1+1/a2)(1+1/a...

    Text Solution

    |