Home
Class 12
MATHS
If x1=sqrt(3) and x(n+1)=(xn)/(1+sqrt(1+...

If `x_1=sqrt(3) and x_(n+1)=(x_n)/(1+sqrt(1+x_ n^2)),AA n in N` then `lim_(n->oo)2^n x_n` is equal to

A

`3/(2pi)`

B

`2/(3pi)`

C

`(3pi)/3`

D

`(3pi)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit of \( 2^n x_n \) as \( n \) approaches infinity, given the recursive sequence defined by \( x_1 = \sqrt{3} \) and \( x_{n+1} = \frac{x_n}{1 + \sqrt{1 + x_n^2}} \). Let's go through the steps: ### Step 1: Calculate \( x_2 \) Using the recursive formula: \[ x_2 = \frac{x_1}{1 + \sqrt{1 + x_1^2}} \] Substituting \( x_1 = \sqrt{3} \): \[ x_2 = \frac{\sqrt{3}}{1 + \sqrt{1 + (\sqrt{3})^2}} = \frac{\sqrt{3}}{1 + \sqrt{1 + 3}} = \frac{\sqrt{3}}{1 + \sqrt{4}} = \frac{\sqrt{3}}{1 + 2} = \frac{\sqrt{3}}{3} = \frac{1}{\sqrt{3}} \] ### Step 2: Calculate \( x_3 \) Now, we calculate \( x_3 \): \[ x_3 = \frac{x_2}{1 + \sqrt{1 + x_2^2}} = \frac{\frac{1}{\sqrt{3}}}{1 + \sqrt{1 + \left(\frac{1}{\sqrt{3}}\right)^2}} = \frac{\frac{1}{\sqrt{3}}}{1 + \sqrt{1 + \frac{1}{3}}} = \frac{\frac{1}{\sqrt{3}}}{1 + \sqrt{\frac{4}{3}}} = \frac{\frac{1}{\sqrt{3}}}{1 + \frac{2}{\sqrt{3}}} \] Simplifying further: \[ = \frac{\frac{1}{\sqrt{3}}}{\frac{\sqrt{3} + 2}{\sqrt{3}}} = \frac{1}{\sqrt{3}(\sqrt{3} + 2)} = \frac{1}{2 + \sqrt{3}} \] ### Step 3: Identify a pattern We observe the values: - \( x_1 = \sqrt{3} \) - \( x_2 = \frac{1}{\sqrt{3}} \) - \( x_3 = \frac{1}{2 + \sqrt{3}} \) It appears that \( x_n \) can be expressed in terms of \( \tan \) functions: - \( x_1 = \tan\left(\frac{\pi}{3}\right) \) - \( x_2 = \tan\left(\frac{\pi}{6}\right) \) - \( x_3 = \tan\left(\frac{\pi}{12}\right) \) This suggests that: \[ x_n = \tan\left(\frac{\pi}{3 \cdot 2^{n-1}}\right) \] ### Step 4: Find \( 2^n x_n \) Now we compute: \[ 2^n x_n = 2^n \tan\left(\frac{\pi}{3 \cdot 2^{n-1}}\right) \] As \( n \to \infty \), \( \frac{\pi}{3 \cdot 2^{n-1}} \to 0 \). We can use the small angle approximation \( \tan x \approx x \) when \( x \) is small: \[ \tan\left(\frac{\pi}{3 \cdot 2^{n-1}}\right) \approx \frac{\pi}{3 \cdot 2^{n-1}} \] Thus: \[ 2^n x_n \approx 2^n \cdot \frac{\pi}{3 \cdot 2^{n-1}} = \frac{2 \pi}{3} \] ### Step 5: Take the limit Finally, we take the limit: \[ \lim_{n \to \infty} 2^n x_n = \frac{2 \pi}{3} \] ### Conclusion The limit is: \[ \lim_{n \to \infty} 2^n x_n = \frac{2\pi}{3} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If x_(0) = 3 and x_(n+1) = x_(n) sqrt(x_n + 1) , then x_(3) =

If x_0=1 and x_(n+1)=3sqrt(2x_(n)), then x_3 =

If x_(1)=3 and x_(n+1)=sqrt(2+x_(n))" ",nge1, then lim_(ntooo) x_(n) is

If x_(1)=2 and x_(n+1)=sqrt(x_(n)^(2)+8) , then x_(4)=

lim_(n->oo)sin(x/2^n)/(x/2^n)

If x_(n+1)=sqrt((1+x_n)/2) and |x_0|lt1 , n in W then lim_(n->oo)sqrt(1-x_0^2)/(x_1x_2x_3...x_(n+1)) =

If x_1=3 and x_(n+1)=sqrt(2+x_n),ngeq1,t h e n""("lim")_(xrarroo)x_n is (a) -1 (b) 2 (c) sqrt(5) (d) 3

lim_(nrarroo) (1-x+x.root n e)^(n) is equal to

If x_1, x_2, x_3,...... x _(2n) are in A.P , then sum _(r=1)^(2n) (-1)^(r+1) x_r^2 is equal to (a) (n)/((2n-1))(x _(1)^(2) -x _(2n) ^(2)) (b) (2n)/((2n-1))(x _(1)^(2) -x _(2n) ^(2)) (c) (n)/((n-1))(x _(1)^(2) -x _(2n) ^(2)) (d) (n)/((2n+1))(x _(1)^(2) -x _(2n) ^(2))

Let I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx. Then lim_(nrarroo)(I_(n))/(I_(n-2))=

ARIHANT MATHS ENGLISH-LIMITS-Exercise (Single Option Correct Type Questions)
  1. Let f(x) be a real valued function defined for all xge1, satistying f(...

    Text Solution

    |

  2. The quadratic equation whose roots are the minimum value of sin^(2)the...

    Text Solution

    |

  3. If x1=sqrt(3) and x(n+1)=(xn)/(1+sqrt(1+x n^2)),AA n in N then lim(n...

    Text Solution

    |

  4. lim(xtoa^(-))(sqrt(x-b)-sqrt(a-b))/((x^(2)-a^(2))),(agtb) is

    Text Solution

    |

  5. lim(ntooo)(sin^(n)1+cos^(n)1)^(n) is equal to

    Text Solution

    |

  6. The value of \lim{n \to \infty } sum(k=1)^n (n-k)/(n^2) cos((4k)/n) eq...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. int(-1)^(2)[([x])/(1+x^(2))]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  9. If alpha and beta are roots of x^(2)-(sqrt(1-cos 2 theta))x+theta=0, w...

    Text Solution

    |

  10. If f(x)=1/3(f(x+1)+5/(f(x+2))) and f(x)gt0,AA x epsilonR, then lim(xto...

    Text Solution

    |

  11. Let f:(1,2)vecR satisfies the inequality (cos(2x-4)-33)/2ltf(x)lt(x^2|...

    Text Solution

    |

  12. Let f(x) be polynomial of degree 4 with roots 1,2,3,4 and leading coef...

    Text Solution

    |

  13. lim x→π/4 (4sqrt(2)-(cosx+sinx)^5)/(1−sin2x) is equal to

    Text Solution

    |

  14. If underset(ntooo)lim(n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then ...

    Text Solution

    |

  15. Let f(x)=underset(ntooo)lim(1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the...

    Text Solution

    |

  16. Find the integral value of n for which ("lim")(xvec0)(cos^2x-cosx-e^x...

    Text Solution

    |

  17. Find dy/dx if x^7-e^x=siny

    Text Solution

    |

  18. underset(xto(pi)/(2))(lim)([(x)/(2)])/(log(e)(sinx))([.] denotes great...

    Text Solution

    |

  19. Let a1=1, an=n(a(n-1)+1) for n=2,3,... where Pn=(1+1/a1)(1+1/a2)(1+1/a...

    Text Solution

    |

  20. If f(x+ y) = f(x) + f(y) for x, y in R and f(1) = 1, then find the val...

    Text Solution

    |