Home
Class 12
MATHS
The value of \lim{n \to \infty } sum(k=1...

The value of `\lim_{n \to \infty } sum_(k=1)^n (n-k)/(n^2) cos((4k)/n)` equals to

A

(a) `1/4 sin 4+1/15 cos 4-1/16`

B

(b) `1/4 sin 4-1/16cos 4 +1/16`

C

(c) `1/16(1-sin4)`

D

(d) `1/16(1-cos4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to evaluate the expression: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{n-k}{n^2} \cos\left(\frac{4k}{n}\right) \] ### Step 1: Rewrite the summation First, we can rewrite the term \(\frac{n-k}{n^2}\) as follows: \[ \frac{n-k}{n^2} = \frac{n}{n^2} - \frac{k}{n^2} = \frac{1}{n} - \frac{k}{n^2} \] Thus, we can express the limit as: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{n} - \frac{k}{n^2}\right) \cos\left(\frac{4k}{n}\right) \] ### Step 2: Split the summation Now, we can split the summation into two parts: \[ \lim_{n \to \infty} \left( \sum_{k=1}^{n} \frac{1}{n} \cos\left(\frac{4k}{n}\right) - \sum_{k=1}^{n} \frac{k}{n^2} \cos\left(\frac{4k}{n}\right) \right) \] ### Step 3: Recognize the Riemann sum The first summation \(\sum_{k=1}^{n} \frac{1}{n} \cos\left(\frac{4k}{n}\right)\) resembles a Riemann sum for the integral of \(\cos(4x)\) from \(0\) to \(1\) as \(n \to \infty\): \[ \int_{0}^{1} \cos(4x) \, dx \] ### Step 4: Calculate the first integral Calculating the integral: \[ \int \cos(4x) \, dx = \frac{1}{4} \sin(4x) + C \] Thus, evaluating from \(0\) to \(1\): \[ \left[\frac{1}{4} \sin(4x)\right]_{0}^{1} = \frac{1}{4} \sin(4) - \frac{1}{4} \sin(0) = \frac{1}{4} \sin(4) \] ### Step 5: Analyze the second summation Now, consider the second summation: \[ \sum_{k=1}^{n} \frac{k}{n^2} \cos\left(\frac{4k}{n}\right) \] This can be rewritten as: \[ \frac{1}{n^2} \sum_{k=1}^{n} k \cos\left(\frac{4k}{n}\right) \] As \(n \to \infty\), this also resembles a Riemann sum. We can express it as: \[ \frac{1}{n} \sum_{k=1}^{n} \left(\frac{k}{n}\right) \cos\left(4 \cdot \frac{k}{n}\right) \to \int_{0}^{1} x \cos(4x) \, dx \] ### Step 6: Calculate the second integral Using integration by parts where \(u = x\) and \(dv = \cos(4x)dx\): \[ du = dx, \quad v = \frac{1}{4} \sin(4x) \] Thus, \[ \int x \cos(4x) \, dx = x \cdot \frac{1}{4} \sin(4x) - \int \frac{1}{4} \sin(4x) \, dx \] The integral of \(\sin(4x)\) is: \[ -\frac{1}{16} \cos(4x) \] So, we have: \[ \int x \cos(4x) \, dx = \frac{1}{4} x \sin(4x) + \frac{1}{16} \cos(4x) \] Evaluating from \(0\) to \(1\): \[ \left[\frac{1}{4} x \sin(4x) + \frac{1}{16} \cos(4x)\right]_{0}^{1} = \left(\frac{1}{4} \sin(4) + \frac{1}{16} \cos(4)\right) - \left(0 + \frac{1}{16}\right) \] This simplifies to: \[ \frac{1}{4} \sin(4) + \frac{1}{16} \cos(4) - \frac{1}{16} \] ### Step 7: Combine results Now, combining both parts: \[ \frac{1}{4} \sin(4) - \left(\frac{1}{4} \sin(4) + \frac{1}{16} \cos(4) - \frac{1}{16}\right) \] This simplifies to: \[ \frac{1}{16} (1 - \cos(4)) \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{n-k}{n^2} \cos\left(\frac{4k}{n}\right) = \frac{1}{16} (1 - \cos(4)) \] ### Conclusion The correct answer is: \[ \frac{1}{16} (1 - \cos(4)) \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

The value of lim _( n to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

The value of lim_(n rarr infty) (1)/(n) {(n+1)(n+2)(n+3)…(n+n)}^(1//n) is equal to

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

Consider a parabola y = (x^(2))/(4) and the point F (0,1). Let A _(1)(x_(1), y_(1)),A _(2)(x _(2), y_(2)), A_(3)(x_(3), y_(3)),....., A_(n ) (x _(n), y _(n)) are 'n' points on the parabola such x _(k) gt 0 and angle OFA_(k)= (k pi)/(2n) (k =1,2,3,......, n ). Then the value of lim _( n to oo) 1/n sum _(k =1) ^(n) FA_(k), is equal to :

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

The value of lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) is equal to

ARIHANT MATHS ENGLISH-LIMITS-Exercise (Single Option Correct Type Questions)
  1. lim(xtoa^(-))(sqrt(x-b)-sqrt(a-b))/((x^(2)-a^(2))),(agtb) is

    Text Solution

    |

  2. lim(ntooo)(sin^(n)1+cos^(n)1)^(n) is equal to

    Text Solution

    |

  3. The value of \lim{n \to \infty } sum(k=1)^n (n-k)/(n^2) cos((4k)/n) eq...

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. int(-1)^(2)[([x])/(1+x^(2))]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  6. If alpha and beta are roots of x^(2)-(sqrt(1-cos 2 theta))x+theta=0, w...

    Text Solution

    |

  7. If f(x)=1/3(f(x+1)+5/(f(x+2))) and f(x)gt0,AA x epsilonR, then lim(xto...

    Text Solution

    |

  8. Let f:(1,2)vecR satisfies the inequality (cos(2x-4)-33)/2ltf(x)lt(x^2|...

    Text Solution

    |

  9. Let f(x) be polynomial of degree 4 with roots 1,2,3,4 and leading coef...

    Text Solution

    |

  10. lim x→π/4 (4sqrt(2)-(cosx+sinx)^5)/(1−sin2x) is equal to

    Text Solution

    |

  11. If underset(ntooo)lim(n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then ...

    Text Solution

    |

  12. Let f(x)=underset(ntooo)lim(1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the...

    Text Solution

    |

  13. Find the integral value of n for which ("lim")(xvec0)(cos^2x-cosx-e^x...

    Text Solution

    |

  14. Find dy/dx if x^7-e^x=siny

    Text Solution

    |

  15. underset(xto(pi)/(2))(lim)([(x)/(2)])/(log(e)(sinx))([.] denotes great...

    Text Solution

    |

  16. Let a1=1, an=n(a(n-1)+1) for n=2,3,... where Pn=(1+1/a1)(1+1/a2)(1+1/a...

    Text Solution

    |

  17. If f(x+ y) = f(x) + f(y) for x, y in R and f(1) = 1, then find the val...

    Text Solution

    |

  18. Evaluate underset(ntooo)limn^(-n^(2))[(n+2^(0))(n+2^(-1))(n+2^(-2))......

    Text Solution

    |

  19. If f(x)={("sin"[x])/([x]),for[x]!=0, 0,for[x]=0,w h e r e[x] denotes ...

    Text Solution

    |

  20. Evaluate: (lim)(x->2)(x^3-6x^2+11 x-6)/(x^2-6x+8)

    Text Solution

    |