Home
Class 12
MATHS
If alpha and beta are roots of x^(2)-(sq...

If `alpha` and `beta` are roots of `x^(2)-(sqrt(1-cos 2 theta))x+theta=0`, where `0 lt theta lt (pi)/2`. Then `lim_(theta to 0^(+))(1/(alpha)+1/(beta))` is

A

(a)`1/(sqrt(2))`

B

(b)`-sqrt(2)`

C

(c)`sqrt(2)`

D

(d)None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit: \[ \lim_{\theta \to 0^+} \left( \frac{1}{\alpha} + \frac{1}{\beta} \right) \] where \(\alpha\) and \(\beta\) are the roots of the quadratic equation: \[ x^2 - \sqrt{1 - \cos 2\theta} x + \theta = 0 \] ### Step 1: Identify the coefficients The quadratic equation can be written in the standard form \(ax^2 + bx + c = 0\), where: - \(a = 1\) - \(b = -\sqrt{1 - \cos 2\theta}\) - \(c = \theta\) ### Step 2: Use the sum of roots formula The sum of the roots \(\alpha + \beta\) is given by: \[ \alpha + \beta = -\frac{b}{a} = \sqrt{1 - \cos 2\theta} \] ### Step 3: Use the product of roots formula The product of the roots \(\alpha \beta\) is given by: \[ \alpha \beta = \frac{c}{a} = \theta \] ### Step 4: Rewrite the limit We can rewrite the expression for the limit: \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{\sqrt{1 - \cos 2\theta}}{\theta} \] ### Step 5: Substitute into the limit Now we substitute this into the limit: \[ \lim_{\theta \to 0^+} \left( \frac{\sqrt{1 - \cos 2\theta}}{\theta} \right) \] ### Step 6: Simplify \(\sqrt{1 - \cos 2\theta}\) Using the trigonometric identity, we know that: \[ 1 - \cos 2\theta = 2\sin^2 \theta \] Thus, \[ \sqrt{1 - \cos 2\theta} = \sqrt{2\sin^2 \theta} = \sqrt{2} |\sin \theta| \] Since \(\theta\) approaches \(0^+\), \(\sin \theta\) is positive, so we can write: \[ \sqrt{1 - \cos 2\theta} = \sqrt{2} \sin \theta \] ### Step 7: Substitute back into the limit Now we substitute back into the limit: \[ \lim_{\theta \to 0^+} \frac{\sqrt{2} \sin \theta}{\theta} \] ### Step 8: Evaluate the limit Using the standard limit \(\lim_{x \to 0} \frac{\sin x}{x} = 1\): \[ \lim_{\theta \to 0^+} \frac{\sqrt{2} \sin \theta}{\theta} = \sqrt{2} \cdot \lim_{\theta \to 0^+} \frac{\sin \theta}{\theta} = \sqrt{2} \cdot 1 = \sqrt{2} \] ### Final Answer Thus, the limit is: \[ \lim_{\theta \to 0^+} \left( \frac{1}{\alpha} + \frac{1}{\beta} \right) = \sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If cos theta - sin theta = (1)/(5) , where 0 lt theta lt (pi)/(4) , then

sqrt(2+sqrt(2+2cos 4 theta)), forall 0 lt theta lt pi//4 is

cot^(2) theta - (1 + sqrt3) cot theta + sqrt3 = 0,0 lt theta lt (pi)/(2)

if alpha and beta the roots of z+ (1)/(z) =2 (cos theta + I sin theta ) where 0 lt theta lt pi and i=sqrt(-1) show that |alpha - i |= | beta -i|

Solve 5 cos 2 theta+2 "cos"^(2) theta/2 +1=0, -pi lt theta lt pi .

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

Solve: sin 7 theta + sin 4 theta + sin theta = 0, 0 lt theta lt ( pi)/(2)

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

If alpha and beta (alpha lt beta) are the roots of the equation x^(2) + bx + c = 0 , where c lt 0 lt b , then

If rsintheta=3, r=4(1+sintheta) where 0<=theta<=2pi then theta equal to

ARIHANT MATHS ENGLISH-LIMITS-Exercise (Single Option Correct Type Questions)
  1. about to only mathematics

    Text Solution

    |

  2. int(-1)^(2)[([x])/(1+x^(2))]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  3. If alpha and beta are roots of x^(2)-(sqrt(1-cos 2 theta))x+theta=0, w...

    Text Solution

    |

  4. If f(x)=1/3(f(x+1)+5/(f(x+2))) and f(x)gt0,AA x epsilonR, then lim(xto...

    Text Solution

    |

  5. Let f:(1,2)vecR satisfies the inequality (cos(2x-4)-33)/2ltf(x)lt(x^2|...

    Text Solution

    |

  6. Let f(x) be polynomial of degree 4 with roots 1,2,3,4 and leading coef...

    Text Solution

    |

  7. lim x→π/4 (4sqrt(2)-(cosx+sinx)^5)/(1−sin2x) is equal to

    Text Solution

    |

  8. If underset(ntooo)lim(n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then ...

    Text Solution

    |

  9. Let f(x)=underset(ntooo)lim(1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the...

    Text Solution

    |

  10. Find the integral value of n for which ("lim")(xvec0)(cos^2x-cosx-e^x...

    Text Solution

    |

  11. Find dy/dx if x^7-e^x=siny

    Text Solution

    |

  12. underset(xto(pi)/(2))(lim)([(x)/(2)])/(log(e)(sinx))([.] denotes great...

    Text Solution

    |

  13. Let a1=1, an=n(a(n-1)+1) for n=2,3,... where Pn=(1+1/a1)(1+1/a2)(1+1/a...

    Text Solution

    |

  14. If f(x+ y) = f(x) + f(y) for x, y in R and f(1) = 1, then find the val...

    Text Solution

    |

  15. Evaluate underset(ntooo)limn^(-n^(2))[(n+2^(0))(n+2^(-1))(n+2^(-2))......

    Text Solution

    |

  16. If f(x)={("sin"[x])/([x]),for[x]!=0, 0,for[x]=0,w h e r e[x] denotes ...

    Text Solution

    |

  17. Evaluate: (lim)(x->2)(x^3-6x^2+11 x-6)/(x^2-6x+8)

    Text Solution

    |

  18. Let r^(th) term t (r) of a series if given by t (c ) = (r )/(1+r^(2) +...

    Text Solution

    |

  19. The value of lim(ntooo)sum(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

    Text Solution

    |

  20. Let xtan alpha + ysin alpha= alpha and xalpha cosec alpha + ycosalpha...

    Text Solution

    |