Home
Class 12
MATHS
Let a1=1, an=n(a(n-1)+1) for n=2,3,... w...

Let `a_1=1`, `a_n=n(a_(n-1)+1)` for `n=2,3,...` where `P_n=(1+1/a_1)(1+1/a_2)(1+1/a_3)....(1+1/a_n)` then `lim_(nrarroo)P_n=`

A

`e`

B

`e/2`

C

`2e`

D

`3e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit of \( P_n \) as \( n \) approaches infinity, where \[ P_n = \left(1 + \frac{1}{a_1}\right) \left(1 + \frac{1}{a_2}\right) \left(1 + \frac{1}{a_3}\right) \cdots \left(1 + \frac{1}{a_n}\right) \] with the recursive definition of \( a_n \) given by: \[ a_1 = 1, \quad a_n = n(a_{n-1} + 1) \quad \text{for } n = 2, 3, \ldots \] ### Step 1: Calculate the first few terms of \( a_n \) 1. **Calculate \( a_2 \)**: \[ a_2 = 2(a_1 + 1) = 2(1 + 1) = 2 \times 2 = 4 \] 2. **Calculate \( a_3 \)**: \[ a_3 = 3(a_2 + 1) = 3(4 + 1) = 3 \times 5 = 15 \] 3. **Calculate \( a_4 \)**: \[ a_4 = 4(a_3 + 1) = 4(15 + 1) = 4 \times 16 = 64 \] From these calculations, we can see a pattern forming. ### Step 2: Generalize \( a_n \) We can see that: - \( a_1 = 1 \) - \( a_2 = 4 \) - \( a_3 = 15 \) - \( a_4 = 64 \) This suggests that \( a_n \) grows quite rapidly. We can express \( a_n \) in terms of factorials: \[ a_n = n! \cdot \text{(some function of } n\text{)} \] ### Step 3: Analyze \( P_n \) Now we can express \( P_n \): \[ P_n = \prod_{k=1}^{n} \left(1 + \frac{1}{a_k}\right) \] Using the values we calculated: \[ P_n = \left(1 + \frac{1}{1}\right) \left(1 + \frac{1}{4}\right) \left(1 + \frac{1}{15}\right) \left(1 + \frac{1}{64}\right) \cdots \] ### Step 4: Simplify \( P_n \) As \( n \) becomes very large, \( a_n \) becomes very large, and thus \( \frac{1}{a_k} \) becomes very small. We can approximate: \[ P_n \approx \prod_{k=1}^{n} \left(1 + \frac{1}{a_k}\right) \approx \prod_{k=1}^{n} e^{\frac{1}{a_k}} = e^{\sum_{k=1}^{n} \frac{1}{a_k}} \] ### Step 5: Find the limit To find the limit of \( P_n \) as \( n \) approaches infinity, we need to evaluate \( \sum_{k=1}^{n} \frac{1}{a_k} \). As \( a_k \) grows rapidly, this sum converges. ### Conclusion Thus, we can conclude that: \[ \lim_{n \to \infty} P_n = e^{\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{a_k}} = e \] So the final answer is: \[ \lim_{n \to \infty} P_n = e \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If a_1,a_2,a_3,...,a_(n+1) are in A.P. , then 1/(a_1a_2)+1/(a_2a_3)....+1/(a_na_(n+1)) is

Let a_1, a_2, a_3, ...a_(n) be an AP. then: 1 / (a_1 a_n) + 1 / (a_2 a_(n-1)) + 1 /(a_3a_(n-2))+......+ 1 /(a_(n) a_1) =

If a_1,a_2 ...a_n are nth roots of unity then 1/(1-a_1) +1/(1-a_2)+1/(1-a_3)..+1/(1-a_n) is equal to

If a_1,a_2,a_3,……a_n are in A.P. [1/(a_1a_n)+1/(a_2a_(n-1))+1/(a_3a_(n-2))+..+1/(a_na_1)]

Let sequence by defined by a_1=3,a_n=3a_(n-1)+1 for all n >1

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

Let a_1,a_2,a_3 …. a_n be in A.P. If 1/(a_1a_n)+1/(a_2a_(n-1)) +… + 1/(a_n a_1) = k/(a_1 + a_n) (1/a_1 + 1/a_2 + …. 1/a_n) , then k is equal to :

If a_1,a_2,a_3….a_(2n+1) are in A.P then (a_(2n+1)-a_1)/(a_(2n+1)+a_1)+(a_2n-a_2)/(a_(2n)+a_2)+....+(a_(n+2)-a_n)/(a_(n+2)+a_n) is equal to

If a_0, a_1 , a_2 …..a_n are binomial coefficients then (1 + a_1/a_0)(1 +a_2/a_1) …………….(1 + (a_n)/(a_(n-1)) ) =

If a_n>1 for all n in N then log_(a_2) a_1+log_(a_3) a_2+.....log_(a_1)a_n has the minimum value of

ARIHANT MATHS ENGLISH-LIMITS-Exercise (Single Option Correct Type Questions)
  1. lim x→π/4 (4sqrt(2)-(cosx+sinx)^5)/(1−sin2x) is equal to

    Text Solution

    |

  2. If underset(ntooo)lim(n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then ...

    Text Solution

    |

  3. Let f(x)=underset(ntooo)lim(1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the...

    Text Solution

    |

  4. Find the integral value of n for which ("lim")(xvec0)(cos^2x-cosx-e^x...

    Text Solution

    |

  5. Find dy/dx if x^7-e^x=siny

    Text Solution

    |

  6. underset(xto(pi)/(2))(lim)([(x)/(2)])/(log(e)(sinx))([.] denotes great...

    Text Solution

    |

  7. Let a1=1, an=n(a(n-1)+1) for n=2,3,... where Pn=(1+1/a1)(1+1/a2)(1+1/a...

    Text Solution

    |

  8. If f(x+ y) = f(x) + f(y) for x, y in R and f(1) = 1, then find the val...

    Text Solution

    |

  9. Evaluate underset(ntooo)limn^(-n^(2))[(n+2^(0))(n+2^(-1))(n+2^(-2))......

    Text Solution

    |

  10. If f(x)={("sin"[x])/([x]),for[x]!=0, 0,for[x]=0,w h e r e[x] denotes ...

    Text Solution

    |

  11. Evaluate: (lim)(x->2)(x^3-6x^2+11 x-6)/(x^2-6x+8)

    Text Solution

    |

  12. Let r^(th) term t (r) of a series if given by t (c ) = (r )/(1+r^(2) +...

    Text Solution

    |

  13. The value of lim(ntooo)sum(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

    Text Solution

    |

  14. Let xtan alpha + ysin alpha= alpha and xalpha cosec alpha + ycosalpha...

    Text Solution

    |

  15. The polynomial of least degree such that lim(xto0)(1+(x^(2)+f(x))/(x^(...

    Text Solution

    |

  16. If n is a non zero integer and [*] denotes the greatest integer functi...

    Text Solution

    |

  17. The value of lim(xtoa)[sqrt(2-x)+sqrt(1+x)], where a in[0,1/2] and [.]...

    Text Solution

    |

  18. The value of lim(xto0^(+))(-1+sqrt((tanx-sinx)+sqrt((tanx-sinx)+sqrt...

    Text Solution

    |

  19. Evaluate: lim(thetato0)(cos^2(1-cos^2(1-cos^2.....(1-cos^2(theta)))))/...

    Text Solution

    |

  20. The value of lim(ntooo)a(n) when a(n+1)=sqrt(2+a(n)), n=1,2,3,….. is

    Text Solution

    |