Home
Class 12
MATHS
If f(x+ y) = f(x) + f(y) for x, y in R a...

If `f(x+ y) = f(x) + f(y)` for `x, y in R` and `f(1) = 1`, then find the value of `lim_(x->0)(2^(f(tan x)-2^f(sin x)))/(x^2*f(sin x))`

A

`log2`

B

`log4`

C

`logsqrt(2)`

D

`log8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit: \[ \lim_{x \to 0} \frac{2^{f(\tan x)} - 2^{f(\sin x)}}{x^2 f(\sin x)} \] Given that \( f(x+y) = f(x) + f(y) \) for all \( x, y \in \mathbb{R} \) and \( f(1) = 1 \), we can deduce that \( f(x) = x \) for all \( x \in \mathbb{R} \). ### Step 1: Determine \( f(x) \) Using the functional equation \( f(x+y) = f(x) + f(y) \): - Let \( x = 0 \) and \( y = 0 \): \[ f(0) = f(0) + f(0) \implies f(0) = 0 \] - Let \( x = 1 \) and \( y = 1 \): \[ f(2) = f(1) + f(1) = 1 + 1 = 2 \] - By induction or by checking integer values, we can conclude that \( f(n) = n \) for all integers \( n \). Since \( f \) is linear, we can generalize that \( f(x) = x \) for all \( x \in \mathbb{R} \). ### Step 2: Substitute \( f(x) \) into the limit Now substituting \( f(\tan x) \) and \( f(\sin x) \): \[ \lim_{x \to 0} \frac{2^{\tan x} - 2^{\sin x}}{x^2 \sin x} \] ### Step 3: Evaluate the limit As \( x \to 0 \): - \( \tan x \to 0 \) and \( \sin x \to 0 \), thus \( 2^{\tan x} \to 1 \) and \( 2^{\sin x} \to 1 \). - The limit takes the indeterminate form \( \frac{0}{0} \). ### Step 4: Simplify the expression We can rewrite the limit: \[ \lim_{x \to 0} \frac{2^{\tan x} - 1 - (2^{\sin x} - 1)}{x^2 \sin x} \] Using the Taylor expansion for \( 2^u \) around \( u = 0 \): \[ 2^u \approx 1 + u \ln 2 \quad \text{for small } u \] Thus: \[ 2^{\tan x} - 1 \approx \tan x \ln 2 \quad \text{and} \quad 2^{\sin x} - 1 \approx \sin x \ln 2 \] Substituting these approximations: \[ \lim_{x \to 0} \frac{(\tan x - \sin x) \ln 2}{x^2 \sin x} \] ### Step 5: Use the identity for \( \tan x - \sin x \) Using the identity \( \tan x = \frac{\sin x}{\cos x} \): \[ \tan x - \sin x = \frac{\sin x}{\cos x} - \sin x = \sin x \left(\frac{1}{\cos x} - 1\right) = \sin x \left(\frac{1 - \cos x}{\cos x}\right) \] ### Step 6: Substitute back into the limit Now we have: \[ \lim_{x \to 0} \frac{\sin x \cdot \frac{1 - \cos x}{\cos x} \ln 2}{x^2 \sin x} = \lim_{x \to 0} \frac{(1 - \cos x) \ln 2}{x^2 \cos x} \] ### Step 7: Evaluate the limit Using the fact that \( 1 - \cos x \approx \frac{x^2}{2} \) as \( x \to 0 \): \[ \lim_{x \to 0} \frac{\frac{x^2}{2} \ln 2}{x^2 \cos x} = \lim_{x \to 0} \frac{\frac{1}{2} \ln 2}{\cos x} = \frac{1}{2} \ln 2 \] ### Final Answer Thus, the final result is: \[ \frac{1}{2} \ln 2 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If f(x+y) = f(x) + f(y) + |x|y+xy^(2),AA x, y in R and f'(0) = 0 , then

If f(x+y)=f(x) xx f(y) for all x,y in R and f(5)=2, f'(0)=3, then f'(5)=

Let f(x+y) + f(x-y) = 2f(x)f(y) for x, y in R and f(0) != 0 . Then f(x) must be

Let f(x+y)+f(x-y)=2f(x)f(y) AA x,y in R and f(0)=k , then

Let f(x) is a polynomial satisfying f(x).f(y) = f(x) +f(y) + f(xy) - 2 for all x, y and f(2) = 1025, then the value of lim_(x->2) f'(x) is

Let f(x+1/y) +f(x-1/y) =2f(x) f(1/y) AA x, y in R , y!=0 and f(0)=0 then the value of f(1) +f(2)=

If (x^2+x−2)/(x+3) -1) f(x) then find the value of lim_(x->-1) f(x)

If f (x/y)= f(x)/f(y) , AA y, f (y)!=0 and f' (1) = 2 , find f(x) .

If f (x/y)= f(x)/f(y) , AA y, f (y)!=0 and f' (1) = 2 , find f(x) .

If f((x+y)/3)=(2+f(x)+f(y))/3 for all x,y f'(2)=2 then find f(x)

ARIHANT MATHS ENGLISH-LIMITS-Exercise (Single Option Correct Type Questions)
  1. lim x→π/4 (4sqrt(2)-(cosx+sinx)^5)/(1−sin2x) is equal to

    Text Solution

    |

  2. If underset(ntooo)lim(n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then ...

    Text Solution

    |

  3. Let f(x)=underset(ntooo)lim(1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the...

    Text Solution

    |

  4. Find the integral value of n for which ("lim")(xvec0)(cos^2x-cosx-e^x...

    Text Solution

    |

  5. Find dy/dx if x^7-e^x=siny

    Text Solution

    |

  6. underset(xto(pi)/(2))(lim)([(x)/(2)])/(log(e)(sinx))([.] denotes great...

    Text Solution

    |

  7. Let a1=1, an=n(a(n-1)+1) for n=2,3,... where Pn=(1+1/a1)(1+1/a2)(1+1/a...

    Text Solution

    |

  8. If f(x+ y) = f(x) + f(y) for x, y in R and f(1) = 1, then find the val...

    Text Solution

    |

  9. Evaluate underset(ntooo)limn^(-n^(2))[(n+2^(0))(n+2^(-1))(n+2^(-2))......

    Text Solution

    |

  10. If f(x)={("sin"[x])/([x]),for[x]!=0, 0,for[x]=0,w h e r e[x] denotes ...

    Text Solution

    |

  11. Evaluate: (lim)(x->2)(x^3-6x^2+11 x-6)/(x^2-6x+8)

    Text Solution

    |

  12. Let r^(th) term t (r) of a series if given by t (c ) = (r )/(1+r^(2) +...

    Text Solution

    |

  13. The value of lim(ntooo)sum(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

    Text Solution

    |

  14. Let xtan alpha + ysin alpha= alpha and xalpha cosec alpha + ycosalpha...

    Text Solution

    |

  15. The polynomial of least degree such that lim(xto0)(1+(x^(2)+f(x))/(x^(...

    Text Solution

    |

  16. If n is a non zero integer and [*] denotes the greatest integer functi...

    Text Solution

    |

  17. The value of lim(xtoa)[sqrt(2-x)+sqrt(1+x)], where a in[0,1/2] and [.]...

    Text Solution

    |

  18. The value of lim(xto0^(+))(-1+sqrt((tanx-sinx)+sqrt((tanx-sinx)+sqrt...

    Text Solution

    |

  19. Evaluate: lim(thetato0)(cos^2(1-cos^2(1-cos^2.....(1-cos^2(theta)))))/...

    Text Solution

    |

  20. The value of lim(ntooo)a(n) when a(n+1)=sqrt(2+a(n)), n=1,2,3,….. is

    Text Solution

    |