Home
Class 12
MATHS
Let xtan alpha + ysin alpha= alpha and ...

Let `xtan alpha + ysin alpha= alpha` and `xalpha cosec alpha + ycosalpha= 1` be two variable straight lines, `alpha` being the parameter. Let `P` be the point of intersection of the lines. In the limiting position when `a ->0,` the point `P` lies on the line :

A

`(2,-1)`

B

`(2,1)`

C

`(-2,1)`

D

`(-2,-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the two equations given in the question: 1. \( x \tan \alpha + y \sin \alpha = \alpha \) (Equation 1) 2. \( x \alpha \csc \alpha + y \cos \alpha = 1 \) (Equation 2) We need to find the point \( P \) which is the intersection of these two lines as \( \alpha \) approaches 0. ### Step 1: Solve for \( x \) and \( y \) From Equation 1, we can express \( y \) in terms of \( x \): \[ y \sin \alpha = \alpha - x \tan \alpha \] \[ y = \frac{\alpha - x \tan \alpha}{\sin \alpha} \tag{3} \] Now, substitute \( y \) from Equation 3 into Equation 2: \[ x \alpha \csc \alpha + \left(\frac{\alpha - x \tan \alpha}{\sin \alpha}\right) \cos \alpha = 1 \] ### Step 2: Simplify Equation 2 Substituting \( y \) into Equation 2 gives: \[ x \alpha \csc \alpha + \frac{(\alpha - x \tan \alpha) \cos \alpha}{\sin \alpha} = 1 \] Multiplying through by \( \sin \alpha \): \[ x \alpha + (\alpha - x \tan \alpha) \cos \alpha = \sin \alpha \] Expanding this: \[ x \alpha + \alpha \cos \alpha - x \tan \alpha \cos \alpha = \sin \alpha \] Rearranging gives: \[ x \alpha - x \tan \alpha \cos \alpha = \sin \alpha - \alpha \cos \alpha \] Factoring out \( x \): \[ x (\alpha - \tan \alpha \cos \alpha) = \sin \alpha - \alpha \cos \alpha \] Thus, \[ x = \frac{\sin \alpha - \alpha \cos \alpha}{\alpha - \tan \alpha \cos \alpha} \tag{4} \] ### Step 3: Find the limits as \( \alpha \to 0 \) Now we need to find \( \lim_{\alpha \to 0} x \) and \( \lim_{\alpha \to 0} y \). #### Finding \( \lim_{\alpha \to 0} x \) Using L'Hôpital's Rule or Taylor series expansion: \[ \tan \alpha \approx \alpha + \frac{\alpha^3}{3} + O(\alpha^5) \quad \text{and} \quad \sin \alpha \approx \alpha - \frac{\alpha^3}{6} + O(\alpha^5) \] Thus, \[ \sin \alpha - \alpha \cos \alpha \approx \alpha - \frac{\alpha^3}{6} - \alpha(1 - \frac{\alpha^2}{2}) = \frac{\alpha^3}{3} + O(\alpha^5) \] And, \[ \alpha - \tan \alpha \cos \alpha \approx \alpha - \left(\alpha + \frac{\alpha^3}{3}\right)(1 - \frac{\alpha^2}{2}) = \frac{\alpha^3}{6} + O(\alpha^5) \] Thus, \[ x \approx \frac{\frac{\alpha^3}{3}}{\frac{\alpha^3}{6}} = 2 \] #### Finding \( \lim_{\alpha \to 0} y \) Substituting \( x \) back into Equation 3: \[ y = \frac{\alpha - 2 \tan \alpha}{\sin \alpha} \] Using the Taylor expansion for \( \tan \alpha \): \[ y \approx \frac{\alpha - 2\left(\alpha + \frac{\alpha^3}{3}\right)}{\alpha - \frac{\alpha^3}{6}} \approx \frac{-\alpha}{\alpha} = -1 \] ### Conclusion Thus, the point \( P \) in the limiting position as \( \alpha \to 0 \) is: \[ P = (2, -1) \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

The point of intersection of lines is (alpha, beta) , then the equation whose roots are alpha, beta , is

If sinalpha, sin^2alpha, 1 , sin^4alpha and sin^6alpha are in A.P., where -pi < alpha < pi, then alpha lies in the interval

Locus of the point of intersection of lines x cosalpha + y sin alpha = a and x sin alpha - y cos alpha =b (alpha in R ) is

If the straight lines ax+by+p=0 and x cos alpha +y sin alpha = c enclose an angle pi//4 between them and meet the straight line x sin alpha - y cos alpha = 0 in the same point , then

If p sin^(3)alpha+qcos^(3)alpha=sinalphacosalpha and p sinalpha - q cos alpha=0, then prove that : p^(2)+q^(2)=1

If a pair of variable straight lines x^2 + 4y^2+alpha xy =0 (where alpha is a real parameter) cut the ellipse x^2+4y^2= 4 at two points A and B, then the locus of the point of intersection of tangents at A and B is

Find the locues of the middle point of the portion of the line x"cos"alpha+y"sin"alpha=p , where p is a costant, intercepted between the axes.

Find the locus of the point of intersection of lines xcosalpha+ysinalpha=a and xsinalpha-ycosalpha=b(alpha is a variable).

Find the locus of the point of intersection of lines xcosalpha+ysinalpha=a and xsinalpha-ycosalpha=b(alpha is a variable).

Consider the equation of a pair of straight lines as x^2-3xy+lambday^2+3x=5y+2=0 The point of intersection of line is (alpha, beta) , then the value of alpha^2+beta^2 is

ARIHANT MATHS ENGLISH-LIMITS-Exercise (Single Option Correct Type Questions)
  1. lim x→π/4 (4sqrt(2)-(cosx+sinx)^5)/(1−sin2x) is equal to

    Text Solution

    |

  2. If underset(ntooo)lim(n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then ...

    Text Solution

    |

  3. Let f(x)=underset(ntooo)lim(1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the...

    Text Solution

    |

  4. Find the integral value of n for which ("lim")(xvec0)(cos^2x-cosx-e^x...

    Text Solution

    |

  5. Find dy/dx if x^7-e^x=siny

    Text Solution

    |

  6. underset(xto(pi)/(2))(lim)([(x)/(2)])/(log(e)(sinx))([.] denotes great...

    Text Solution

    |

  7. Let a1=1, an=n(a(n-1)+1) for n=2,3,... where Pn=(1+1/a1)(1+1/a2)(1+1/a...

    Text Solution

    |

  8. If f(x+ y) = f(x) + f(y) for x, y in R and f(1) = 1, then find the val...

    Text Solution

    |

  9. Evaluate underset(ntooo)limn^(-n^(2))[(n+2^(0))(n+2^(-1))(n+2^(-2))......

    Text Solution

    |

  10. If f(x)={("sin"[x])/([x]),for[x]!=0, 0,for[x]=0,w h e r e[x] denotes ...

    Text Solution

    |

  11. Evaluate: (lim)(x->2)(x^3-6x^2+11 x-6)/(x^2-6x+8)

    Text Solution

    |

  12. Let r^(th) term t (r) of a series if given by t (c ) = (r )/(1+r^(2) +...

    Text Solution

    |

  13. The value of lim(ntooo)sum(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

    Text Solution

    |

  14. Let xtan alpha + ysin alpha= alpha and xalpha cosec alpha + ycosalpha...

    Text Solution

    |

  15. The polynomial of least degree such that lim(xto0)(1+(x^(2)+f(x))/(x^(...

    Text Solution

    |

  16. If n is a non zero integer and [*] denotes the greatest integer functi...

    Text Solution

    |

  17. The value of lim(xtoa)[sqrt(2-x)+sqrt(1+x)], where a in[0,1/2] and [.]...

    Text Solution

    |

  18. The value of lim(xto0^(+))(-1+sqrt((tanx-sinx)+sqrt((tanx-sinx)+sqrt...

    Text Solution

    |

  19. Evaluate: lim(thetato0)(cos^2(1-cos^2(1-cos^2.....(1-cos^2(theta)))))/...

    Text Solution

    |

  20. The value of lim(ntooo)a(n) when a(n+1)=sqrt(2+a(n)), n=1,2,3,….. is

    Text Solution

    |