Home
Class 12
MATHS
The polynomial of least degree such that...

The polynomial of least degree such that `lim_(xto0)(1+(x^(2)+f(x))/(x^(2)))^(1//x)=e^(2)` is

A

`x^(2)`

B

`x^(3)+2x^(2)`

C

`-x^(2)+2x^(3)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the polynomial \( f(x) \) of the least degree such that \[ \lim_{x \to 0} \left(1 + \frac{x^2 + f(x)}{x^2}\right)^{\frac{1}{x}} = e^2. \] ### Step 1: Rewrite the limit expression We start by rewriting the limit expression: \[ \lim_{x \to 0} \left(1 + \frac{x^2 + f(x)}{x^2}\right)^{\frac{1}{x}} = \lim_{x \to 0} \left(1 + 1 + \frac{f(x)}{x^2}\right)^{\frac{1}{x}} = \lim_{x \to 0} \left(2 + \frac{f(x)}{x^2}\right)^{\frac{1}{x}}. \] ### Step 2: Set up the limit condition For the limit to equal \( e^2 \), we need: \[ \lim_{x \to 0} \left(2 + \frac{f(x)}{x^2}\right)^{\frac{1}{x}} = e^2. \] This implies: \[ \lim_{x \to 0} \frac{f(x)}{x^2} \to 0 \quad \text{and} \quad \lim_{x \to 0} \left(2 + \frac{f(x)}{x^2}\right)^{\frac{1}{x}} \to e^2. \] ### Step 3: Use the exponential limit property Using the property of limits, we can express the limit in terms of the exponent: \[ \lim_{x \to 0} \frac{f(x)}{x^2} = 0 \implies f(x) = o(x^2). \] Thus, we can write: \[ \lim_{x \to 0} \frac{f(x)}{x^2} = 2 - 1 = 1. \] ### Step 4: Assume a polynomial form for \( f(x) \) Let \( f(x) \) be a polynomial of the form: \[ f(x) = a_1 x^2 + a_2 x^3 + \ldots \] ### Step 5: Evaluate the limit Substituting \( f(x) \) into the limit gives: \[ \lim_{x \to 0} \left(2 + \frac{a_1 x^2 + a_2 x^3 + \ldots}{x^2}\right)^{\frac{1}{x}} = \lim_{x \to 0} \left(2 + a_1 + a_2 x + \ldots\right)^{\frac{1}{x}}. \] ### Step 6: Set the coefficients For the limit to equal \( e^2 \), we need: \[ 2 + a_1 = 0 \quad \text{and} \quad a_2 = 2. \] ### Step 7: Solve for coefficients From \( 2 + a_1 = 0 \), we find: \[ a_1 = -2. \] And from \( a_2 = 2 \), we have: \[ a_2 = 2. \] ### Step 8: Write the polynomial Thus, the polynomial \( f(x) \) of least degree is: \[ f(x) = -2x^2 + 2x^3. \] ### Final Answer The polynomial of least degree such that \[ \lim_{x \to 0} \left(1 + \frac{x^2 + f(x)}{x^2}\right)^{\frac{1}{x}} = e^2 \] is \[ f(x) = -x^2 + 2x^3. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0)((1+5x^(2))/(1+3x^(2)))^(1//x^(2))

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

lim_(xto0)((e^(x)-1)/x)^(1//x)

lim _(xto0)(((1+ x )^(2/x))/(e ^(2)))^((4)/(sin x)) is :

Evaluate lim_(xto0) (e^(x^(2))-cosx)/(x^(2))

Evaluate lim_(xto0) (e^(x)+e^(-x)-2)/(x^(2))

Evaluate : lim_(xto0) (e^(x) -e^(-x))/x

Evaluate lim_(xto0) (1-cos2x)/x^(2)

lim_(xto0)(1-cos(x^(2)))/(x^(3)(4^(x)-1)) is equal to:

Evaluate lim_(xto0) sin(picos^(2)x)/(x^(2)).

ARIHANT MATHS ENGLISH-LIMITS-Exercise (Single Option Correct Type Questions)
  1. lim x→π/4 (4sqrt(2)-(cosx+sinx)^5)/(1−sin2x) is equal to

    Text Solution

    |

  2. If underset(ntooo)lim(n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then ...

    Text Solution

    |

  3. Let f(x)=underset(ntooo)lim(1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the...

    Text Solution

    |

  4. Find the integral value of n for which ("lim")(xvec0)(cos^2x-cosx-e^x...

    Text Solution

    |

  5. Find dy/dx if x^7-e^x=siny

    Text Solution

    |

  6. underset(xto(pi)/(2))(lim)([(x)/(2)])/(log(e)(sinx))([.] denotes great...

    Text Solution

    |

  7. Let a1=1, an=n(a(n-1)+1) for n=2,3,... where Pn=(1+1/a1)(1+1/a2)(1+1/a...

    Text Solution

    |

  8. If f(x+ y) = f(x) + f(y) for x, y in R and f(1) = 1, then find the val...

    Text Solution

    |

  9. Evaluate underset(ntooo)limn^(-n^(2))[(n+2^(0))(n+2^(-1))(n+2^(-2))......

    Text Solution

    |

  10. If f(x)={("sin"[x])/([x]),for[x]!=0, 0,for[x]=0,w h e r e[x] denotes ...

    Text Solution

    |

  11. Evaluate: (lim)(x->2)(x^3-6x^2+11 x-6)/(x^2-6x+8)

    Text Solution

    |

  12. Let r^(th) term t (r) of a series if given by t (c ) = (r )/(1+r^(2) +...

    Text Solution

    |

  13. The value of lim(ntooo)sum(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

    Text Solution

    |

  14. Let xtan alpha + ysin alpha= alpha and xalpha cosec alpha + ycosalpha...

    Text Solution

    |

  15. The polynomial of least degree such that lim(xto0)(1+(x^(2)+f(x))/(x^(...

    Text Solution

    |

  16. If n is a non zero integer and [*] denotes the greatest integer functi...

    Text Solution

    |

  17. The value of lim(xtoa)[sqrt(2-x)+sqrt(1+x)], where a in[0,1/2] and [.]...

    Text Solution

    |

  18. The value of lim(xto0^(+))(-1+sqrt((tanx-sinx)+sqrt((tanx-sinx)+sqrt...

    Text Solution

    |

  19. Evaluate: lim(thetato0)(cos^2(1-cos^2(1-cos^2.....(1-cos^2(theta)))))/...

    Text Solution

    |

  20. The value of lim(ntooo)a(n) when a(n+1)=sqrt(2+a(n)), n=1,2,3,….. is

    Text Solution

    |