Home
Class 12
MATHS
The value of lim(xtoa)[sqrt(2-x)+sqrt(1+...

The value of `lim_(xtoa)[sqrt(2-x)+sqrt(1+x)]`, where `a in[0,1/2]` and `[.]` denotes the greatest integer function is:

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to a} \left( \sqrt{2 - x} + \sqrt{1 + x} \right) \) where \( a \in [0, \frac{1}{2}] \) and using the greatest integer function, we can follow these steps: ### Step 1: Substitute the limit into the function We start by substituting \( x = a \) into the expression: \[ \sqrt{2 - a} + \sqrt{1 + a} \] ### Step 2: Analyze the range of \( a \) Since \( a \) can take values in the interval \([0, \frac{1}{2}]\), we will evaluate the expression at the endpoints of this interval. ### Step 3: Evaluate at the endpoints 1. **When \( a = 0 \)**: \[ \sqrt{2 - 0} + \sqrt{1 + 0} = \sqrt{2} + \sqrt{1} = \sqrt{2} + 1 \approx 2.414 \] 2. **When \( a = \frac{1}{2} \)**: \[ \sqrt{2 - \frac{1}{2}} + \sqrt{1 + \frac{1}{2}} = \sqrt{\frac{3}{2}} + \sqrt{\frac{3}{2}} = 2\sqrt{\frac{3}{2}} \approx 2.449 \] ### Step 4: Determine the range of values Now we have: - At \( a = 0 \), the value is approximately \( 2.414 \). - At \( a = \frac{1}{2} \), the value is approximately \( 2.449 \). Thus, as \( a \) varies from \( 0 \) to \( \frac{1}{2} \), the expression \( \sqrt{2 - a} + \sqrt{1 + a} \) takes values in the interval \( [2.414, 2.449] \). ### Step 5: Apply the greatest integer function The greatest integer function \( \lfloor x \rfloor \) gives the largest integer less than or equal to \( x \). Since: \[ 2.414 < 2.449 < 3 \] The greatest integer function will yield: \[ \lfloor \sqrt{2 - a} + \sqrt{1 + a} \rfloor = 2 \] for all \( a \in [0, \frac{1}{2}] \). ### Conclusion Thus, the value of the limit is: \[ \lim_{x \to a} \left( \sqrt{2 - x} + \sqrt{1 + x} \right) = 2 \] ### Final Answer \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] denotes the greatest integer function is

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(1+cotx)) is equal to (where, [.] denotes the greatest integer function )

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

lim_(xrarr(-1)/(3)) (1)/(x)[(-1)/(x)]= (where [.] denotes the greatest integer function)

ARIHANT MATHS ENGLISH-LIMITS-Exercise (Single Option Correct Type Questions)
  1. lim x→π/4 (4sqrt(2)-(cosx+sinx)^5)/(1−sin2x) is equal to

    Text Solution

    |

  2. If underset(ntooo)lim(n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then ...

    Text Solution

    |

  3. Let f(x)=underset(ntooo)lim(1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the...

    Text Solution

    |

  4. Find the integral value of n for which ("lim")(xvec0)(cos^2x-cosx-e^x...

    Text Solution

    |

  5. Find dy/dx if x^7-e^x=siny

    Text Solution

    |

  6. underset(xto(pi)/(2))(lim)([(x)/(2)])/(log(e)(sinx))([.] denotes great...

    Text Solution

    |

  7. Let a1=1, an=n(a(n-1)+1) for n=2,3,... where Pn=(1+1/a1)(1+1/a2)(1+1/a...

    Text Solution

    |

  8. If f(x+ y) = f(x) + f(y) for x, y in R and f(1) = 1, then find the val...

    Text Solution

    |

  9. Evaluate underset(ntooo)limn^(-n^(2))[(n+2^(0))(n+2^(-1))(n+2^(-2))......

    Text Solution

    |

  10. If f(x)={("sin"[x])/([x]),for[x]!=0, 0,for[x]=0,w h e r e[x] denotes ...

    Text Solution

    |

  11. Evaluate: (lim)(x->2)(x^3-6x^2+11 x-6)/(x^2-6x+8)

    Text Solution

    |

  12. Let r^(th) term t (r) of a series if given by t (c ) = (r )/(1+r^(2) +...

    Text Solution

    |

  13. The value of lim(ntooo)sum(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

    Text Solution

    |

  14. Let xtan alpha + ysin alpha= alpha and xalpha cosec alpha + ycosalpha...

    Text Solution

    |

  15. The polynomial of least degree such that lim(xto0)(1+(x^(2)+f(x))/(x^(...

    Text Solution

    |

  16. If n is a non zero integer and [*] denotes the greatest integer functi...

    Text Solution

    |

  17. The value of lim(xtoa)[sqrt(2-x)+sqrt(1+x)], where a in[0,1/2] and [.]...

    Text Solution

    |

  18. The value of lim(xto0^(+))(-1+sqrt((tanx-sinx)+sqrt((tanx-sinx)+sqrt...

    Text Solution

    |

  19. Evaluate: lim(thetato0)(cos^2(1-cos^2(1-cos^2.....(1-cos^2(theta)))))/...

    Text Solution

    |

  20. The value of lim(ntooo)a(n) when a(n+1)=sqrt(2+a(n)), n=1,2,3,….. is

    Text Solution

    |