Home
Class 12
MATHS
The value of lim(xto0^(+))(-1+sqrt((ta...

The value of
`lim_(xto0^(+))(-1+sqrt((tanx-sinx)+sqrt((tanx-sinx)+sqrt((tanx-sinx)+…oo))))/(-1+sqrt(x^(3)+sqrt(x^(3)+sqrt(x^(3)+…oo))))` is

A

a) `1/2`

B

b) `1/4`

C

c) `1/8`

D

d) `1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0^+} \frac{-1 + \sqrt{\tan x - \sin x + \sqrt{\tan x - \sin x + \sqrt{\tan x - \sin x + \ldots}}}}{-1 + \sqrt{x^3 + \sqrt{x^3 + \sqrt{x^3 + \ldots}}}} \] we will break it down step by step. ### Step 1: Simplifying the numerator We start with the expression in the numerator: \[ \sqrt{\tan x - \sin x + \sqrt{\tan x - \sin x + \sqrt{\tan x - \sin x + \ldots}}} \] Let \( y = \sqrt{\tan x - \sin x + y} \). Squaring both sides, we have: \[ y^2 = \tan x - \sin x + y \] Rearranging gives: \[ y^2 - y - (\tan x - \sin x) = 0 \] Using the quadratic formula, we find: \[ y = \frac{1 \pm \sqrt{1 + 4(\tan x - \sin x)}}{2} \] As \( x \to 0^+ \), both \( \tan x \) and \( \sin x \) approach \( x \). Thus, we can use Taylor expansions: \[ \tan x \approx x + \frac{x^3}{3} + O(x^5) \] \[ \sin x \approx x - \frac{x^3}{6} + O(x^5) \] Calculating \( \tan x - \sin x \): \[ \tan x - \sin x \approx \left(x + \frac{x^3}{3}\right) - \left(x - \frac{x^3}{6}\right) = \frac{x^3}{3} + \frac{x^3}{6} = \frac{x^3}{2} \] Thus, as \( x \to 0^+ \): \[ \tan x - \sin x \to 0 \] So, we have: \[ y \approx \sqrt{\frac{x^3}{2}} \text{ as } x \to 0^+ \] ### Step 2: Simplifying the denominator Now, consider the denominator: \[ \sqrt{x^3 + \sqrt{x^3 + \sqrt{x^3 + \ldots}}} \] Let \( z = \sqrt{x^3 + z} \). Squaring gives: \[ z^2 = x^3 + z \] Rearranging gives: \[ z^2 - z - x^3 = 0 \] Using the quadratic formula: \[ z = \frac{1 \pm \sqrt{1 + 4x^3}}{2} \] As \( x \to 0^+ \), \( z \) approaches \( 0 \). Thus, we can simplify: \[ z \approx \sqrt{x^3} = x^{3/2} \] ### Step 3: Putting it all together Now substituting back into the limit: \[ \lim_{x \to 0^+} \frac{-1 + \sqrt{\frac{x^3}{2}}}{-1 + x^{3/2}} \] As \( x \to 0^+ \), both the numerator and denominator approach \( -1 \): \[ \lim_{x \to 0^+} \frac{-1 + \sqrt{\frac{x^3}{2}}}{-1 + x^{3/2}} = \frac{-1 + 0}{-1 + 0} = \frac{0}{0} \] ### Step 4: Applying L'Hôpital's Rule Since we have an indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule: Differentiate the numerator and denominator: 1. **Numerator**: \[ \frac{d}{dx}(-1 + \sqrt{\frac{x^3}{2}}) = \frac{3}{2\sqrt{2}} x^{1/2} \] 2. **Denominator**: \[ \frac{d}{dx}(-1 + x^{3/2}) = \frac{3}{2} x^{1/2} \] Now substituting back into the limit: \[ \lim_{x \to 0^+} \frac{\frac{3}{2\sqrt{2}} x^{1/2}}{\frac{3}{2} x^{1/2}} = \frac{1}{\sqrt{2}} \] ### Final Answer Thus, the value of the limit is: \[ \frac{1}{\sqrt{2}} \text{ or } \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x->0)(1-1/2^x)(1/(sqrt(tanx+4)-2))

The value of lim_(xto pi//4)((cosx+sinx)^(3)-2sqrt(2))/(1-sin2x) is

The value of lim_(xrarr0) (3sqrt(1+sinx )-3sqrt(1-sinx))/(x) , is

Evaluate lim_(xto 0^(+))(sinx)^(tanx)

The value of lim_(xto (pi)/2) sqrt((tanx-sin{tan^(-1)(tanx)})/(tanx+cos^(2)(tanx))) is ………..

The value of lim_(xto2) (sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)" is "

Evaluate lim_(xto0) (a^(tanx)-a^(sinx))/(tanx-sinx),agt0

Evaluate lim_(xto oo)sqrt((x-sinx)/(x+cos^(2)x))

Evaluate lim_(xto oo)sqrt((x-sinx)/(x+cos^(2)x))

If 0ltxltpi/2 prove that sqrt(tanx+sinx)+sqrt(tanx-sinx)=2sqrt(tanx)cos (pi/4-x/2)

ARIHANT MATHS ENGLISH-LIMITS-Exercise (Single Option Correct Type Questions)
  1. lim x→π/4 (4sqrt(2)-(cosx+sinx)^5)/(1−sin2x) is equal to

    Text Solution

    |

  2. If underset(ntooo)lim(n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then ...

    Text Solution

    |

  3. Let f(x)=underset(ntooo)lim(1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the...

    Text Solution

    |

  4. Find the integral value of n for which ("lim")(xvec0)(cos^2x-cosx-e^x...

    Text Solution

    |

  5. Find dy/dx if x^7-e^x=siny

    Text Solution

    |

  6. underset(xto(pi)/(2))(lim)([(x)/(2)])/(log(e)(sinx))([.] denotes great...

    Text Solution

    |

  7. Let a1=1, an=n(a(n-1)+1) for n=2,3,... where Pn=(1+1/a1)(1+1/a2)(1+1/a...

    Text Solution

    |

  8. If f(x+ y) = f(x) + f(y) for x, y in R and f(1) = 1, then find the val...

    Text Solution

    |

  9. Evaluate underset(ntooo)limn^(-n^(2))[(n+2^(0))(n+2^(-1))(n+2^(-2))......

    Text Solution

    |

  10. If f(x)={("sin"[x])/([x]),for[x]!=0, 0,for[x]=0,w h e r e[x] denotes ...

    Text Solution

    |

  11. Evaluate: (lim)(x->2)(x^3-6x^2+11 x-6)/(x^2-6x+8)

    Text Solution

    |

  12. Let r^(th) term t (r) of a series if given by t (c ) = (r )/(1+r^(2) +...

    Text Solution

    |

  13. The value of lim(ntooo)sum(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

    Text Solution

    |

  14. Let xtan alpha + ysin alpha= alpha and xalpha cosec alpha + ycosalpha...

    Text Solution

    |

  15. The polynomial of least degree such that lim(xto0)(1+(x^(2)+f(x))/(x^(...

    Text Solution

    |

  16. If n is a non zero integer and [*] denotes the greatest integer functi...

    Text Solution

    |

  17. The value of lim(xtoa)[sqrt(2-x)+sqrt(1+x)], where a in[0,1/2] and [.]...

    Text Solution

    |

  18. The value of lim(xto0^(+))(-1+sqrt((tanx-sinx)+sqrt((tanx-sinx)+sqrt...

    Text Solution

    |

  19. Evaluate: lim(thetato0)(cos^2(1-cos^2(1-cos^2.....(1-cos^2(theta)))))/...

    Text Solution

    |

  20. The value of lim(ntooo)a(n) when a(n+1)=sqrt(2+a(n)), n=1,2,3,….. is

    Text Solution

    |