Home
Class 12
MATHS
Evaluate: lim(thetato0)(cos^2(1-cos^2(1-...

Evaluate: `lim_(thetato0)(cos^2(1-cos^2(1-cos^2.....(1-cos^2(theta)))))/(sin(pi(sqrt(theta+4)-2)/theta))`

A

(a) `2`

B

(b) `sqrt(2)`

C

(c) `1/2`

D

(d) `1/(sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{\theta \to 0} \frac{\cos^2(1 - \cos^2(1 - \cos^2(\ldots(1 - \cos^2(\theta))\ldots)))}{\sin\left(\frac{\pi(\sqrt{\theta + 4} - 2)}{\theta}\right)}, \] we will break it down into steps. ### Step 1: Analyze the Numerator The numerator is \[ \cos^2(1 - \cos^2(1 - \cos^2(\ldots(1 - \cos^2(\theta))\ldots))). \] Let's denote \[ x_0 = \theta, \quad x_{n+1} = 1 - \cos^2(x_n). \] As \(\theta \to 0\), \(x_0 \to 0\). We need to find the limit of \(x_n\) as \(n \to \infty\). Using the identity \(1 - \cos^2(x) = \sin^2(x)\), we have: \[ x_1 = \sin^2(x_0) \approx x_0^2 \quad \text{(for small } x_0\text{)}. \] Continuing this process, we find: \[ x_2 = 1 - \cos^2(x_1) \approx 1 - \cos^2(x_0^2) \approx \sin^2(x_0^2) \approx (x_0^2)^2 = x_0^4. \] This suggests that \(x_n\) approaches \(0\) very quickly. In fact, we can show that \(x_n \approx \theta^{2^n}\) for large \(n\). Thus, as \(n \to \infty\), \(x_n \to 0\) implies: \[ \cos^2(x_n) \to \cos^2(0) = 1. \] ### Step 2: Analyze the Denominator The denominator is \[ \sin\left(\frac{\pi(\sqrt{\theta + 4} - 2)}{\theta}\right). \] As \(\theta \to 0\), \(\sqrt{\theta + 4} \to 2\), thus: \[ \sqrt{\theta + 4} - 2 \to 0. \] Using the binomial approximation: \[ \sqrt{\theta + 4} \approx 2 + \frac{\theta}{4} \quad \text{(for small } \theta\text{)}, \] we find: \[ \sqrt{\theta + 4} - 2 \approx \frac{\theta}{4}. \] Substituting this back into the denominator gives: \[ \frac{\pi(\sqrt{\theta + 4} - 2)}{\theta} \approx \frac{\pi \cdot \frac{\theta}{4}}{\theta} = \frac{\pi}{4}. \] Thus, we have: \[ \sin\left(\frac{\pi(\sqrt{\theta + 4} - 2)}{\theta}\right) \to \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}. \] ### Step 3: Combine Results Now we can combine our results: - The limit of the numerator is \(1\). - The limit of the denominator is \(\frac{1}{\sqrt{2}}\). Thus, the overall limit is: \[ \lim_{\theta \to 0} \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2}. \] ### Final Answer The value of the limit is \[ \sqrt{2}. \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

lim_(thetato0)(1-cos4theta)/(1-cos6theta) is equal to

Let f_n(theta)=(cos(theta/2)+cos2theta+cos((7theta)/2)+....+cos(3n-2)(theta/2))/(sin(theta/2)+sin2theta+sin((7theta)/2)+....+sin(3n-2)(theta/2)) then (a) f_3((3pi)/(16))=sqrt(2)-1 (b) f_5(pi/(28))=sqrt(2)+1 (c) f_7(pi/(60))=(2+sqrt(3)) (d) none of these

If cos theta > sin theta > 0, then evaluate : int{log((1+sin2theta)/(1-sin2theta))^(cos^(2) theta)+log((cos2theta)/(1+sin2theta))} d theta

cos theta sqrt(1-sin^(2)theta)=

Prove : (1+sin2theta-cos2theta)/(1+sin2theta+cos2theta)=tantheta

Prove that 1+cos^2 2theta=2(cos^4theta+sin^4theta)

2(sin^(6) theta + cos^(6)theta) - 3(sin^(4)theta + cos^(4)theta)+ 1 = 0

Prove that: 1+cos^2 2theta=2(cos^4theta+sin^4theta)

ARIHANT MATHS ENGLISH-LIMITS-Exercise (Single Option Correct Type Questions)
  1. lim x→π/4 (4sqrt(2)-(cosx+sinx)^5)/(1−sin2x) is equal to

    Text Solution

    |

  2. If underset(ntooo)lim(n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then ...

    Text Solution

    |

  3. Let f(x)=underset(ntooo)lim(1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the...

    Text Solution

    |

  4. Find the integral value of n for which ("lim")(xvec0)(cos^2x-cosx-e^x...

    Text Solution

    |

  5. Find dy/dx if x^7-e^x=siny

    Text Solution

    |

  6. underset(xto(pi)/(2))(lim)([(x)/(2)])/(log(e)(sinx))([.] denotes great...

    Text Solution

    |

  7. Let a1=1, an=n(a(n-1)+1) for n=2,3,... where Pn=(1+1/a1)(1+1/a2)(1+1/a...

    Text Solution

    |

  8. If f(x+ y) = f(x) + f(y) for x, y in R and f(1) = 1, then find the val...

    Text Solution

    |

  9. Evaluate underset(ntooo)limn^(-n^(2))[(n+2^(0))(n+2^(-1))(n+2^(-2))......

    Text Solution

    |

  10. If f(x)={("sin"[x])/([x]),for[x]!=0, 0,for[x]=0,w h e r e[x] denotes ...

    Text Solution

    |

  11. Evaluate: (lim)(x->2)(x^3-6x^2+11 x-6)/(x^2-6x+8)

    Text Solution

    |

  12. Let r^(th) term t (r) of a series if given by t (c ) = (r )/(1+r^(2) +...

    Text Solution

    |

  13. The value of lim(ntooo)sum(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

    Text Solution

    |

  14. Let xtan alpha + ysin alpha= alpha and xalpha cosec alpha + ycosalpha...

    Text Solution

    |

  15. The polynomial of least degree such that lim(xto0)(1+(x^(2)+f(x))/(x^(...

    Text Solution

    |

  16. If n is a non zero integer and [*] denotes the greatest integer functi...

    Text Solution

    |

  17. The value of lim(xtoa)[sqrt(2-x)+sqrt(1+x)], where a in[0,1/2] and [.]...

    Text Solution

    |

  18. The value of lim(xto0^(+))(-1+sqrt((tanx-sinx)+sqrt((tanx-sinx)+sqrt...

    Text Solution

    |

  19. Evaluate: lim(thetato0)(cos^2(1-cos^2(1-cos^2.....(1-cos^2(theta)))))/...

    Text Solution

    |

  20. The value of lim(ntooo)a(n) when a(n+1)=sqrt(2+a(n)), n=1,2,3,….. is

    Text Solution

    |