Home
Class 12
MATHS
lim(xto0)[m(sinx)/x] is equal to (where ...

`lim_(xto0)[m(sinx)/x]` is equal to (where `m epsilon I` and `[.]` denotes greatest integer function)

A

`m` if `mlt0`

B

`m-1` if `mgt0`

C

`m-1`, if `mlt0`

D

`m` if `mgt0`

Text Solution

Verified by Experts

The correct Answer is:
A, B
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|3 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

x→1 lim ​ (1−x+[x−1]+[1−x]) is equal to (where [.] denotes greatest integer function)

Solve (i) lim_(xto1) sin x (ii) lim_(xto0^(+))[(sinx)/x] (iii) lim_(xto0^(-))[(sinx)/x] (where [.] denotes greatest integer function)

Solve (i) lim_(xto0^(+))[(tanx)/x] (ii) lim_(xto0^(-))[(tanx)/x] (where [.] denotes greatest integer function)

The value of lim_(xto 0)[(sinx.tanx)/(x^(2))] is …….. (where [.] denotes greatest integer function).

The value of int_0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denotes the greatest integer function)

lim_(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the greatest integer function, is

If lim_( xto 0) [(m "sin" x)/(x)] = 8 then the value of m is ([.] in the greatest integer function).

Solve (i) lim_(xtooo)tan^(-1)x (ii) lim_(xto-oo)tan^(-1)x (where [.] denotes greatest integer function)

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(1+cotx)) is equal to (where, [.] denotes the greatest integer function )

int_- 10^0 (|(2[x])/(3x-[x]|)/(2[x])/(3x-[x]))dx is equal to (where [*] denotes greatest integer function.) is equal to (where [*] denotes greatest integer function.)