Home
Class 12
MATHS
For agt0, let l=lim(xto(pi)/2)(a^(cotx)-...

For `agt0,` let `l=lim_(xto(pi)/2)(a^(cotx)-a^(cosx))/(cotx-cosx)` and `m=lim_(xto-oo)(sqrt(x^(2)+ax))-(sqrt(x^(2)-ax))` then solve it

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the limits \( l \) and \( m \) as defined in the question. Let's break it down step by step. ### Step 1: Finding \( l = \lim_{x \to \frac{\pi}{2}} \frac{a^{\cot x} - a^{\cos x}}{\cot x - \cos x} \) 1. **Substituting the limit**: As \( x \) approaches \( \frac{\pi}{2} \), both \( \cot x \) and \( \cos x \) approach 0. Thus, we have an indeterminate form \( \frac{0}{0} \). 2. **Applying L'Hôpital's Rule**: Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if \( \lim_{x \to c} \frac{f(x)}{g(x)} \) is of the form \( \frac{0}{0} \), then: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] 3. **Finding derivatives**: - Let \( f(x) = a^{\cot x} - a^{\cos x} \) - Let \( g(x) = \cot x - \cos x \) - Differentiate \( f(x) \) and \( g(x) \): - \( f'(x) = a^{\cot x} \cdot \frac{-a^{\cot x} \ln a}{\sin^2 x} - a^{\cos x} \cdot (-\sin x \ln a) \) - \( g'(x) = -\csc^2 x + \sin x \) 4. **Evaluating the limit**: - Substitute \( x = \frac{\pi}{2} \) into \( f'(x) \) and \( g'(x) \) and simplify. 5. **Final result for \( l \)**: - After simplification, we find that \( l = \log a \). ### Step 2: Finding \( m = \lim_{x \to -\infty} \left( \sqrt{x^2 + ax} - \sqrt{x^2 - ax} \right) \) 1. **Rearranging the expression**: Multiply and divide by the conjugate: \[ m = \lim_{x \to -\infty} \frac{(\sqrt{x^2 + ax} - \sqrt{x^2 - ax})(\sqrt{x^2 + ax} + \sqrt{x^2 - ax})}{\sqrt{x^2 + ax} + \sqrt{x^2 - ax}} \] 2. **Simplifying the numerator**: The numerator becomes: \[ (x^2 + ax) - (x^2 - ax) = 2ax \] 3. **Simplifying the denominator**: The denominator can be simplified as: \[ \sqrt{x^2 + ax} + \sqrt{x^2 - ax} \] 4. **Factoring out \( x^2 \)**: - Factor \( x^2 \) out of the square roots: \[ \sqrt{x^2(1 + \frac{a}{x})} + \sqrt{x^2(1 - \frac{a}{x})} = |x|\left(\sqrt{1 + \frac{a}{x}} + \sqrt{1 - \frac{a}{x}}\right) \] - Since \( x \to -\infty \), \( |x| = -x \). 5. **Final limit evaluation**: - Substitute \( x \to -\infty \): \[ m = \lim_{x \to -\infty} \frac{2ax}{-x(\sqrt{1 + \frac{a}{x}} + \sqrt{1 - \frac{a}{x}})} = \lim_{x \to -\infty} \frac{2a}{-\left(\sqrt{1 + 0} + \sqrt{1 - 0}\right)} = \frac{2a}{-2} = -a \] ### Final Results: - \( l = \log a \) - \( m = -a \)
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|3 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarrpi//2)(a^(cotx)-a^cosx)/(cotx-cosx)a gt 0 is equal to

lim_(xto2)(x^2-4)/(sqrt(x+2)-sqrt(3x-2))

Evaluate lim_(xto (pi^(-))/(2)) (cosx)^(cosx).

lim_(xto oo)(x/(1+x))^(x) is

The lim_(xto(pi)/2)(cot x-cosx)/((pi-2x)^(3)) equals

Evaluate lim_(xto0) (sqrt(2+x)-sqrt(2))/(x).

Evaluate lim_(xto pi//4) (1-cot^(3)x)/(2-cotx-cot^(3)x).

Evaluate lim_(xto oo)sqrt((x-sinx)/(x+cos^(2)x))

Evaluate lim_(xto oo)sqrt((x-sinx)/(x+cos^(2)x))

Evaluate lim_(xto0) (cosx)^(cotx).