Home
Class 12
MATHS
Consider the function f(x)=((ax+1)/(bx+2...

Consider the function `f(x)=((ax+1)/(bx+2))^(x)`, where `a,bgt0`, the `lim_(xtooo)f(x)` is

A

exists for all values of a and b

B

zer for `altb`

C

non existent for `agtb`

D

`e^(-(1//a))` or `e^(-(1//b))` if `a=b`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit of the function \( f(x) = \left( \frac{ax + 1}{bx + 2} \right)^x \) as \( x \) approaches infinity, we will analyze three cases based on the relationship between \( a \) and \( b \). ### Step 1: Identify the cases based on \( a \) and \( b \) We have three cases to consider: 1. Case 1: \( a < b \) 2. Case 2: \( a > b \) 3. Case 3: \( a = b \) ### Step 2: Case 1 - \( a < b \) In this case, we analyze the limit: \[ \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left( \frac{ax + 1}{bx + 2} \right)^x \] Dividing the numerator and denominator by \( x \): \[ = \lim_{x \to \infty} \left( \frac{a + \frac{1}{x}}{b + \frac{2}{x}} \right)^x \] As \( x \to \infty \), \( \frac{1}{x} \) and \( \frac{2}{x} \) approach 0: \[ = \lim_{x \to \infty} \left( \frac{a}{b} \right)^x \] Since \( a < b \), \( \frac{a}{b} < 1 \). Therefore, \( \left( \frac{a}{b} \right)^x \to 0 \) as \( x \to \infty \). ### Step 3: Case 2 - \( a > b \) Now, we analyze the limit for the case where \( a > b \): \[ \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left( \frac{ax + 1}{bx + 2} \right)^x \] Again, dividing by \( x \): \[ = \lim_{x \to \infty} \left( \frac{a + \frac{1}{x}}{b + \frac{2}{x}} \right)^x \] As \( x \to \infty \): \[ = \lim_{x \to \infty} \left( \frac{a}{b} \right)^x \] Since \( a > b \), \( \frac{a}{b} > 1 \). Therefore, \( \left( \frac{a}{b} \right)^x \to \infty \) as \( x \to \infty \). ### Step 4: Case 3 - \( a = b \) In this case, we have: \[ \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left( \frac{ax + 1}{bx + 2} \right)^x \] Since \( a = b \): \[ = \lim_{x \to \infty} \left( \frac{a + \frac{1}{x}}{a + \frac{2}{x}} \right)^x \] This simplifies to: \[ = \lim_{x \to \infty} \left( \frac{a}{a} \right)^x = 1^x \] This form \( 1^\infty \) is indeterminate. To resolve this, we can use the logarithmic limit: \[ \lim_{x \to \infty} x \left( \frac{a + \frac{1}{x}}{a + \frac{2}{x}} - 1 \right) \] Calculating the expression inside the limit: \[ = \lim_{x \to \infty} x \left( \frac{a + \frac{1}{x} - (a + \frac{2}{x})}{a + \frac{2}{x}} \right) = \lim_{x \to \infty} x \left( \frac{-\frac{1}{x}}{a + \frac{2}{x}} \right) \] This simplifies to: \[ = \lim_{x \to \infty} \frac{-1}{a + \frac{2}{x}} = \frac{-1}{a} \] Thus, we have: \[ \lim_{x \to \infty} f(x) = e^{-\frac{1}{a}} \] ### Conclusion The limit of \( f(x) \) as \( x \to \infty \) is: - \( 0 \) if \( a < b \) - \( \infty \) if \( a > b \) - \( e^{-\frac{1}{a}} \) if \( a = b \)
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|3 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If the function f (x) = {{:(3,x lt 0),(12, x gt 0):} then lim_(x to 0) f (x) =

Consider the function f(x)=x^(2)+bx+c, where D=b^(2)-4cgt0 , then match the follwoing columns.

For the function f(x) = 2 . Find lim_(x to 1) f(x)

Consider the function f(x) = {{:(2, x le 0),(2, x gt 0):} Find lim_(x->2)

Evaluate lim_(xtooo)(1+2/x)^(x)

If lim_(xtooo) f(x) exists and is finite and nonzero and if lim_(xtooo) {f(x)+(3f(x)-1)/(f^(2)(x))}=3 , then the value of lim_(xtooo) f(x)" is " _______.

If the function f(x) satisfies (lim)_(x->1)(f(x)-2)/(x^2-1)=pi, evaluate (lim)_(x->1)f(x)

Let f :RtoR be a positive, increasing function with lim_(xtooo) (f(3x))/(f(x))=1 . Then lim_(xtooo) (f(2x))/(f(x)) is equal to

Let f(x)=ab sin x+bsqrt(1-a^(2))cosx+c , where |a|lt1,bgt0 then

Let f(x) be a real valued function defined for all xge1 , satistying f(1)=1 and f'(x)=1/(x^(2)+f(x)) , then lim_(xtooo)f(x)