Home
Class 12
MATHS
If f(x)=(x.2^(x)-x)/(1-cosx) and g(x)=2^...

If `f(x)=(x.2^(x)-x)/(1-cosx)` and `g(x)=2^(x).sin((log2)/(2^(x)))` then

A

`lim_(xto0)f(x)=log2`

B

`lim_(xtooo)g(x)=log4`

C

`lim_(xto0)f(x)=log4`

D

`lim_(xtooo)g(x)=log2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limits of the two functions \( f(x) \) and \( g(x) \) as \( x \) approaches 0 and infinity, respectively. ### Step 1: Evaluate \( \lim_{x \to 0} f(x) \) Given: \[ f(x) = \frac{x \cdot 2^x - x}{1 - \cos x} \] First, substitute \( x = 0 \): \[ f(0) = \frac{0 \cdot 2^0 - 0}{1 - \cos(0)} = \frac{0}{0} \text{ (indeterminate form)} \] ### Step 2: Simplify \( f(x) \) We can factor out \( x \) from the numerator: \[ f(x) = \frac{x(2^x - 1)}{1 - \cos x} \] ### Step 3: Rewrite the denominator Using the identity \( 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \): \[ f(x) = \frac{x(2^x - 1)}{2 \sin^2\left(\frac{x}{2}\right)} \] ### Step 4: Apply limits Now, we can separate the limit: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x(2^x - 1)}{2 \sin^2\left(\frac{x}{2}\right)} \] ### Step 5: Use known limits Using the known limits: 1. \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \) 2. \( \lim_{x \to 0} \frac{2^x - 1}{x} = \ln(2) \) We can rewrite the limit: \[ \lim_{x \to 0} f(x) = \frac{1}{2} \cdot \lim_{x \to 0} \frac{x(2^x - 1)}{\sin^2\left(\frac{x}{2}\right)} \] ### Step 6: Substitute the limits Substituting the limits: \[ \lim_{x \to 0} f(x) = \frac{1}{2} \cdot \ln(2) \cdot \lim_{x \to 0} \frac{x}{\left(\frac{x}{2}\right)^2} \] This simplifies to: \[ \lim_{x \to 0} f(x) = \frac{1}{2} \cdot \ln(2) \cdot \frac{4}{1} = 2 \ln(2) \] ### Step 7: Final result for \( f(x) \) Thus: \[ \lim_{x \to 0} f(x) = \ln(4) \] ### Step 8: Evaluate \( \lim_{x \to \infty} g(x) \) Given: \[ g(x) = 2^x \cdot \sin\left(\frac{\log 2}{2^x}\right) \] ### Step 9: Substitute \( x \to \infty \) As \( x \to \infty \), \( \frac{\log 2}{2^x} \to 0 \): \[ g(x) = 2^x \cdot \sin\left(\frac{\log 2}{2^x}\right) \to \infty \cdot 0 \text{ (indeterminate form)} \] ### Step 10: Rewrite using limits We can rewrite: \[ g(x) = \frac{\log 2}{2^x} \cdot \frac{2^x \cdot \sin\left(\frac{\log 2}{2^x}\right)}{\frac{\log 2}{2^x}} \] ### Step 11: Apply known limit Using the limit: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] We have: \[ \lim_{x \to \infty} g(x) = \log 2 \cdot 1 = \log 2 \] ### Final Results 1. \( \lim_{x \to 0} f(x) = \ln(4) \) 2. \( \lim_{x \to \infty} g(x) = \log(2) \)
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|3 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Let f:RtoR be defined as f(x)=(2x-3pi)^(3)+(4)/(3)x+cosx and g(x)=f^(-1)(x) then

Let f(x)=sin^(-1)((2x)/(1+x^(2))) and g(x)=cos^(-1)((x^(2)-1)/(x^(2)+1)) . Then tha value of f(10)-g(100) is equal to

Examine whether following pair of functions are identical or not? (i) f(x)=(x^(2)-1)/(x-1) and g(x)=x+1 (ii) f(x)=sin^(2)x+cos^(2)x and g(x)=sec^(2)x-tan^(2)x

Statement-1 : For real values of x and y the relation y^(2) = 2x - x^(1) - 1 represents y as a function of x. Statement-2 : If f(x) = log (x-2)(x-3) and g(x) = log(x-2) + log (x-3) then f=g Statement-3 : If f(x+2) = 2x-5 then f(x) = 2x-9.

If the function f(x)=log(x-2)-log(x-3) and g(x)=log((x-2)/(x-3)) are identical, then

If f(x) = x log x and g(x) = 10^(x) , then g(f(2)) =

If f(x)=(x^2)/(2-2cosx);g(x)=(x^2)/(6x-6sinx) where 0 < x < 1, then (A) both 'f' and 'g' are increasing functions

If y=f(x^(3)),z=g(x^(2)),f'(x),=cosx and g'(x)=sinx," then "(dy)/(dz) is

If f(x)=3 cos x and g(x)=sin^(2)x , the evaluate: (f+g)((pi)/(2))

Consider f, g and h be three real valued function defined on R. Let f(x)=sin3x+cosx,g(x)=cos3x+sinx and h(x)=f^(2)(x)+g^(2)(x). Then, The length of a longest interval in which the function g=h(x) is increasing, is