Home
Class 12
MATHS
If lim(xto3)(x^(3)+cx^(2)+5x+12)/(x^(2)-...

If `lim_(xto3)(x^(3)+cx^(2)+5x+12)/(x^(2)-7x+12)=l` (finite real number), ten

A

`l=4`

B

`c=-6`

C

`c=4`

D

`x epsilonR`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given, we need to find the value of \( c \) such that the limit \[ \lim_{x \to 3} \frac{x^3 + cx^2 + 5x + 12}{x^2 - 7x + 12} = l \] is a finite real number. ### Step 1: Evaluate the limit at \( x = 3 \) First, we substitute \( x = 3 \) into the denominator: \[ x^2 - 7x + 12 = 3^2 - 7 \cdot 3 + 12 = 9 - 21 + 12 = 0 \] Since the denominator is zero, we need to check the numerator: \[ x^3 + cx^2 + 5x + 12 = 3^3 + c \cdot 3^2 + 5 \cdot 3 + 12 = 27 + 9c + 15 + 12 = 54 + 9c \] For the limit to be finite, the numerator must also equal zero when \( x = 3 \): \[ 54 + 9c = 0 \] ### Step 2: Solve for \( c \) Now, we solve for \( c \): \[ 9c = -54 \implies c = -6 \] ### Step 3: Substitute \( c \) back into the limit Now that we have \( c = -6 \), we substitute this value back into the original limit: \[ \lim_{x \to 3} \frac{x^3 - 6x^2 + 5x + 12}{x^2 - 7x + 12} \] ### Step 4: Differentiate using L'Hôpital's Rule Since we still have a \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule: Differentiate the numerator and denominator: - Numerator: \[ \frac{d}{dx}(x^3 - 6x^2 + 5x + 12) = 3x^2 - 12x + 5 \] - Denominator: \[ \frac{d}{dx}(x^2 - 7x + 12) = 2x - 7 \] ### Step 5: Evaluate the limit again Now we evaluate the limit: \[ \lim_{x \to 3} \frac{3x^2 - 12x + 5}{2x - 7} \] Substituting \( x = 3 \): Numerator: \[ 3(3^2) - 12(3) + 5 = 27 - 36 + 5 = -4 \] Denominator: \[ 2(3) - 7 = 6 - 7 = -1 \] Thus, the limit becomes: \[ \frac{-4}{-1} = 4 \] ### Final Result The value of \( c \) is \( -6 \) and the limit \( l \) is \( 4 \). ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|3 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 3)(x^(3)+x^(2)-12x)/(x^(2)-9)=

lim_(xrarr3) (x^(2)+x-12)/(x^(2)-2x-3)

lim_(x to 2) (x^(3) + x^(2) + 4x + 12)/(x^(3) - 3x + 2) is equal to

Evaluate lim_(x to 4) (x^(2) - 7x + 12)/(x^(2) - 16)

Evaluate lim_(xto2) (x^(2)-5x+6)/(x^(2)-4).

Evaluate lim_(xto0^(-)) (x^(2)-3x+2)/(x^(3)-2x^(2)).

Evaluate lim_(xto-3) (x^(3)+27)/(x^(5)+243)

Evaluate Lim_(xto 2) (x^(5)-32)/(x^(2)-4)

Evaluate lim_(xto3) ((x^(2)-9))/((x-3))

lim_(xto oo)(ln(x^(2)+5x)-2ln(cx+1)=-2 then