Home
Class 12
MATHS
For n epsilon N let x(n) be defined as (...

For `n epsilon N` let `x_(n)` be defined as `(1+1/n)^((n+x_(n)))=e` then `lim_(nto oo)(2x_(n))` equals…..

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ (1 + \frac{1}{n})^{(n + x_n)} = e \] We need to find the limit: \[ \lim_{n \to \infty} (2x_n) \] ### Step 1: Rewrite the equation We can rewrite the equation as: \[ x_n = (1 + \frac{1}{n})^{(n + x_n)} = e \] Taking the natural logarithm on both sides gives us: \[ \ln((1 + \frac{1}{n})^{(n + x_n)}) = \ln(e) \] This simplifies to: \[ (n + x_n) \ln(1 + \frac{1}{n}) = 1 \] ### Step 2: Use the expansion of \(\ln(1 + x)\) Using the Taylor series expansion for \(\ln(1 + x)\) around \(x = 0\): \[ \ln(1 + \frac{1}{n}) \approx \frac{1}{n} - \frac{1}{2n^2} + O(\frac{1}{n^3}) \] Substituting this into our equation gives: \[ (n + x_n) \left(\frac{1}{n} - \frac{1}{2n^2} + O(\frac{1}{n^3})\right) = 1 \] ### Step 3: Expand and simplify Expanding the left-hand side: \[ (n + x_n) \left(\frac{1}{n}\right) - (n + x_n) \left(\frac{1}{2n^2}\right) + O\left(\frac{1}{n^3}\right) = 1 \] This leads to: \[ 1 + \frac{x_n}{n} - \frac{1}{2n} - \frac{x_n}{2n^2} + O\left(\frac{1}{n^3}\right) = 1 \] ### Step 4: Collect terms From this, we can collect terms: \[ \frac{x_n}{n} - \frac{1}{2n} - \frac{x_n}{2n^2} + O\left(\frac{1}{n^3}\right) = 0 \] ### Step 5: Solve for \(x_n\) As \(n \to \infty\), the dominant term is: \[ \frac{x_n}{n} - \frac{1}{2n} = 0 \] Thus, \[ x_n \approx \frac{1}{2} \quad \text{as } n \to \infty \] ### Step 6: Find the limit Now we can find the limit: \[ \lim_{n \to \infty} (2x_n) = 2 \cdot \frac{1}{2} = 1 \] ### Final Answer Thus, the limit is: \[ \lim_{n \to \infty} (2x_n) = 1 \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|9 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise MATCHING TYPE QUESTIONS|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

lim_(n to oo)(n!)/((n+1)!-n!)

If x_(1)=3 and x_(n+1)=sqrt(2+x_(n))" ",nge1, then lim_(ntooo) x_(n) is

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

l_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(nto oo)n[l_(n)+l_(n-2)] equals

Prove that lim_(n->oo)(1+1/n)^n=e

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

Let A={:[(1,x/n),(-x/n,1)]:},"then "lim_(ntooo) A^(n) is:

Let f(x)= lim_(n->oo)(sinx)^(2n)

lim_(n to oo) n/(2^n)int_0^2x^n \ dx equals

(lim)_(n to oo)n/(2^n)int_0^2x^n dx equals___

ARIHANT MATHS ENGLISH-LIMITS-Exercise (Single Integer Answer Type Questions)
  1. Let L=lim(x->oo)(xlogx+2x*logsin(1/(sqrt(x)))), then value of (-2/L) ...

    Text Solution

    |

  2. For n epsilon N let x(n) be defined as (1+1/n)^((n+x(n)))=e then lim(n...

    Text Solution

    |

  3. Let f(x)=x^4-x^3 then find f '(2)

    Text Solution

    |

  4. If the arithmetic mean of the product of all pairs of positive intege...

    Text Solution

    |

  5. The value of lim(n->oo)sum(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is ...

    Text Solution

    |

  6. The value of lim(xto (pi)/2) sqrt((tanx-sin{tan^(-1)(tanx)})/(tanx+cos...

    Text Solution

    |

  7. Express in the form of complax number if z= i^5

    Text Solution

    |

  8. If the two AB:(int(0)^(2t)((sinx)/x+1)dx)x+y=3t and AC:2tx+y=0 interse...

    Text Solution

    |

  9. Find dy/dx if e^x=logy-sinx

    Text Solution

    |

  10. If L=lim(xto(pi^(+))/2)(costan^(-1)(tanx))/(x-pi//2) then cos(2piL) is

    Text Solution

    |

  11. Number of solutions of the equation csctheta=k in [0,pi] where k=lim(n...

    Text Solution

    |

  12. If C satisfies the equation lim(xto oo)((x+c)/(x-c))^(x)=4 then |(e^(c...

    Text Solution

    |

  13. If lim(xto-oo)((3x^(4)+2x^(2)).sin(1/x)+|x|^(3)+5)/(|x|^(3)+|x^(2)|+|x...

    Text Solution

    |

  14. If f(x)=lim(t to 0)[(2x)/(pi).tan^(-1)(x/(t^(2)))],then f(1) is …….

    Text Solution

    |

  15. Differentiate x^3 - 5 sinx w.r.t x

    Text Solution

    |

  16. If l=lim(xto1^(+))2^(-2^(1/(1-x))) and m=lim(xto1^(+))(x sin (x-[x]))/...

    Text Solution

    |

  17. The value of lim(xto 0)[(sinx.tanx)/(x^(2))] is …….. (where [.] deno...

    Text Solution

    |

  18. underset(nrarroo)limunderset(r=1)overset(n)Sigma(r)/(1xx3xx5xx7xx9xx.....

    Text Solution

    |

  19. Find dy/dx if y= sin^4x

    Text Solution

    |

  20. If f(x+y+z)=f(x)+f(y)+f(z) with f(1)=1 and f(2)=2 and x,y, z epsilonR ...

    Text Solution

    |