Home
Class 12
MATHS
If the arithmetic mean of the product of...

If the arithmetic mean of the product of all pairs of positive integers whose sum is n is `A_n` then `lim_(n->oo) n^2/(A_n)` equals to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit of \( \frac{n^2}{A_n} \) as \( n \) approaches infinity, where \( A_n \) is the arithmetic mean of the product of all pairs of positive integers whose sum is \( n \). ### Step-by-Step Solution: 1. **Define the pairs**: Let the two positive integers be \( k \) and \( n-k \). The pairs will be formed by varying \( k \) from 1 to \( n-1 \). 2. **Calculate the product**: The product of each pair is \( k(n-k) \). 3. **Sum of products**: We need to find the sum of \( k(n-k) \) for \( k \) from 1 to \( n-1 \): \[ S = \sum_{k=1}^{n-1} k(n-k) = \sum_{k=1}^{n-1} (nk - k^2) = n\sum_{k=1}^{n-1} k - \sum_{k=1}^{n-1} k^2 \] 4. **Use summation formulas**: - The formula for the sum of the first \( m \) integers is: \[ \sum_{k=1}^{m} k = \frac{m(m+1)}{2} \] - The formula for the sum of the squares of the first \( m \) integers is: \[ \sum_{k=1}^{m} k^2 = \frac{m(m+1)(2m+1)}{6} \] 5. **Apply the formulas**: For \( m = n-1 \): \[ \sum_{k=1}^{n-1} k = \frac{(n-1)n}{2} \] \[ \sum_{k=1}^{n-1} k^2 = \frac{(n-1)n(2(n-1)+1)}{6} = \frac{(n-1)n(2n-1)}{6} \] 6. **Substituting back into the sum**: \[ S = n \cdot \frac{(n-1)n}{2} - \frac{(n-1)n(2n-1)}{6} \] 7. **Simplifying the expression**: \[ S = \frac{n^2(n-1)}{2} - \frac{(n-1)n(2n-1)}{6} \] To combine these, find a common denominator (which is 6): \[ S = \frac{3n^2(n-1)}{6} - \frac{(n-1)n(2n-1)}{6} = \frac{(n-1)n(3n - (2n - 1))}{6} = \frac{(n-1)n(n+1)}{6} \] 8. **Calculate \( A_n \)**: The arithmetic mean \( A_n \) is given by: \[ A_n = \frac{S}{n-1} = \frac{(n-1)n(n+1)}{6(n-1)} = \frac{n(n+1)}{6} \] 9. **Finding the limit**: We need to evaluate: \[ \lim_{n \to \infty} \frac{n^2}{A_n} = \lim_{n \to \infty} \frac{n^2}{\frac{n(n+1)}{6}} = \lim_{n \to \infty} \frac{6n^2}{n(n+1)} = \lim_{n \to \infty} \frac{6n}{n+1} \] As \( n \to \infty \), this simplifies to: \[ \lim_{n \to \infty} \frac{6n}{n+1} = \lim_{n \to \infty} \frac{6}{1 + \frac{1}{n}} = 6 \] ### Final Answer: \[ \lim_{n \to \infty} \frac{n^2}{A_n} = 6 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|9 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise MATCHING TYPE QUESTIONS|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

If the sum of the first n terms of an arithmetic progression, whose first term is the sum of the first n positive integers and whose common difference is n, is (8n^(2)-11n-20) , then the sum of all the possible values of n is

Determine the sum of all possible positive integers n, the product of whose digits equals n^2 - 15n- 27

For each positive integer n, let S_n =sum of all positive integers less than or equal on n. Then S_(51) equals

Find the sum of firsts 20 terms of the sequence whose n t h term is a_n=A n+B .

Find the sum of first 24 terms of the list of numbers whose nth term is given by a_n=3+2n

lim_(n to oo) n/(2^n)int_0^2x^n \ dx equals

If a_n = n (n!) , then sum_(r=1)^100 a_r is equal to

Let a_n=16 ,4,1, be a geometric sequence. Define P_n as the product of the first n terms. Then the value of 1/4sum_(n=1)^oo P_n^(1/n) is _________.

Find the sum of n terms of an A.P. whose n t h terms is given by a_n=5-6n .

ARIHANT MATHS ENGLISH-LIMITS-Exercise (Single Integer Answer Type Questions)
  1. For n epsilon N let x(n) be defined as (1+1/n)^((n+x(n)))=e then lim(n...

    Text Solution

    |

  2. Let f(x)=x^4-x^3 then find f '(2)

    Text Solution

    |

  3. If the arithmetic mean of the product of all pairs of positive intege...

    Text Solution

    |

  4. The value of lim(n->oo)sum(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is ...

    Text Solution

    |

  5. The value of lim(xto (pi)/2) sqrt((tanx-sin{tan^(-1)(tanx)})/(tanx+cos...

    Text Solution

    |

  6. Express in the form of complax number if z= i^5

    Text Solution

    |

  7. If the two AB:(int(0)^(2t)((sinx)/x+1)dx)x+y=3t and AC:2tx+y=0 interse...

    Text Solution

    |

  8. Find dy/dx if e^x=logy-sinx

    Text Solution

    |

  9. If L=lim(xto(pi^(+))/2)(costan^(-1)(tanx))/(x-pi//2) then cos(2piL) is

    Text Solution

    |

  10. Number of solutions of the equation csctheta=k in [0,pi] where k=lim(n...

    Text Solution

    |

  11. If C satisfies the equation lim(xto oo)((x+c)/(x-c))^(x)=4 then |(e^(c...

    Text Solution

    |

  12. If lim(xto-oo)((3x^(4)+2x^(2)).sin(1/x)+|x|^(3)+5)/(|x|^(3)+|x^(2)|+|x...

    Text Solution

    |

  13. If f(x)=lim(t to 0)[(2x)/(pi).tan^(-1)(x/(t^(2)))],then f(1) is …….

    Text Solution

    |

  14. Differentiate x^3 - 5 sinx w.r.t x

    Text Solution

    |

  15. If l=lim(xto1^(+))2^(-2^(1/(1-x))) and m=lim(xto1^(+))(x sin (x-[x]))/...

    Text Solution

    |

  16. The value of lim(xto 0)[(sinx.tanx)/(x^(2))] is …….. (where [.] deno...

    Text Solution

    |

  17. underset(nrarroo)limunderset(r=1)overset(n)Sigma(r)/(1xx3xx5xx7xx9xx.....

    Text Solution

    |

  18. Find dy/dx if y= sin^4x

    Text Solution

    |

  19. If f(x+y+z)=f(x)+f(y)+f(z) with f(1)=1 and f(2)=2 and x,y, z epsilonR ...

    Text Solution

    |

  20. If underset(ntooo)lim(n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then ...

    Text Solution

    |