Home
Class 12
MATHS
Number of solutions of the equation csct...

Number of solutions of the equation `csctheta=k` in `[0,pi]` where `k=lim_(n->oo)prod_(r=2)^n((r^3-1)/(r^3+1))` is ____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the value of \( k \) and then determine the number of solutions to the equation \( \csc \theta = k \) in the interval \([0, \pi]\). ### Step 1: Calculate \( k \) We start with the expression for \( k \): \[ k = \lim_{n \to \infty} \prod_{r=2}^n \frac{r^3 - 1}{r^3 + 1} \] ### Step 2: Simplify the product We can rewrite the fraction inside the product: \[ \frac{r^3 - 1}{r^3 + 1} = \frac{(r - 1)(r^2 + r + 1)}{(r + 1)(r^2 - r + 1)} \] Thus, we can express \( k \) as: \[ k = \lim_{n \to \infty} \left( \prod_{r=2}^n \frac{r - 1}{r + 1} \cdot \prod_{r=2}^n \frac{r^2 + r + 1}{r^2 - r + 1} \right) \] Let’s denote these products as \( P_1 \) and \( P_2 \): \[ P_1 = \prod_{r=2}^n \frac{r - 1}{r + 1}, \quad P_2 = \prod_{r=2}^n \frac{r^2 + r + 1}{r^2 - r + 1} \] ### Step 3: Evaluate \( P_1 \) For \( P_1 \): \[ P_1 = \frac{1}{3} \cdot \frac{2}{4} \cdot \frac{3}{5} \cdots \frac{n-1}{n+1} \] This can be simplified as: \[ P_1 = \frac{2 \cdot 1}{n(n+1)} \to 0 \text{ as } n \to \infty \] ### Step 4: Evaluate \( P_2 \) For \( P_2 \): \[ P_2 = \prod_{r=2}^n \frac{r^2 + r + 1}{r^2 - r + 1} \] This product can be evaluated similarly, but as \( n \to \infty \), the contributions of the terms will also converge. ### Step 5: Combine results As \( n \to \infty \), we find that: \[ k = \lim_{n \to \infty} \left( P_1 \cdot P_2 \right) = 0 \] ### Step 6: Solve \( \csc \theta = k \) Now we have: \[ \csc \theta = 0 \] ### Step 7: Determine the number of solutions The cosecant function \( \csc \theta \) is defined as \( \frac{1}{\sin \theta} \). The equation \( \csc \theta = 0 \) implies that \( \sin \theta \) must be undefined, which does not occur for any \( \theta \) in the interval \([0, \pi]\). ### Conclusion Thus, there are no solutions to the equation \( \csc \theta = 0 \) in the interval \([0, \pi]\). The final answer is: \[ \text{Number of solutions} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|9 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise MATCHING TYPE QUESTIONS|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

The value of lim_(ntooo)sum_(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

lim_(n->oo)1/nsum_(r=1)^(2n)r/(sqrt(n^2+r^2)) equals

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

lim_(n->oo) sum_(r=1)^ntan^(- 1)((2r+1)/(r^4+2r^3+r^2+1)) is equal to

The value of the lim_(n->oo)tan{sum_(r=1)^ntan^(- 1)(1/(2r^2))} is equal to

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

The value of prod_(r=1)^(7)cos\ (pi r)/(15) is

Evaluate lim_(n->oo)1/nsum_(r=n+1)^(2n)log_e(1+r/n)

ARIHANT MATHS ENGLISH-LIMITS-Exercise (Single Integer Answer Type Questions)
  1. Express in the form of complax number if z= i^5

    Text Solution

    |

  2. If the two AB:(int(0)^(2t)((sinx)/x+1)dx)x+y=3t and AC:2tx+y=0 interse...

    Text Solution

    |

  3. Find dy/dx if e^x=logy-sinx

    Text Solution

    |

  4. If L=lim(xto(pi^(+))/2)(costan^(-1)(tanx))/(x-pi//2) then cos(2piL) is

    Text Solution

    |

  5. Number of solutions of the equation csctheta=k in [0,pi] where k=lim(n...

    Text Solution

    |

  6. If C satisfies the equation lim(xto oo)((x+c)/(x-c))^(x)=4 then |(e^(c...

    Text Solution

    |

  7. If lim(xto-oo)((3x^(4)+2x^(2)).sin(1/x)+|x|^(3)+5)/(|x|^(3)+|x^(2)|+|x...

    Text Solution

    |

  8. If f(x)=lim(t to 0)[(2x)/(pi).tan^(-1)(x/(t^(2)))],then f(1) is …….

    Text Solution

    |

  9. Differentiate x^3 - 5 sinx w.r.t x

    Text Solution

    |

  10. If l=lim(xto1^(+))2^(-2^(1/(1-x))) and m=lim(xto1^(+))(x sin (x-[x]))/...

    Text Solution

    |

  11. The value of lim(xto 0)[(sinx.tanx)/(x^(2))] is …….. (where [.] deno...

    Text Solution

    |

  12. underset(nrarroo)limunderset(r=1)overset(n)Sigma(r)/(1xx3xx5xx7xx9xx.....

    Text Solution

    |

  13. Find dy/dx if y= sin^4x

    Text Solution

    |

  14. If f(x+y+z)=f(x)+f(y)+f(z) with f(1)=1 and f(2)=2 and x,y, z epsilonR ...

    Text Solution

    |

  15. If underset(ntooo)lim(n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then ...

    Text Solution

    |

  16. The value of lim(x->oo)(((x-1)(x-2)(x+3)(x+10)(x+15))^(1/5)-x) is .....

    Text Solution

    |

  17. If lim(xto oo)([f(x)]+x^(2)){f(x)}=k, where f(x)=(tanx)/x and [.],{.} ...

    Text Solution

    |

  18. Let p(x) be a polynomial of degree 4 having extremum at x = 1,2 and l...

    Text Solution

    |

  19. If alpha is the number of solution of |x|=log(x-[x]), (where [.] denot...

    Text Solution

    |

  20. Suppose x1=tan^-1 2 >x2>x3>.... are the real numbers satisfying sin(...

    Text Solution

    |