Home
Class 12
MATHS
If f(x+y+z)=f(x)+f(y)+f(z) with f(1)=1 a...

If `f(x+y+z)=f(x)+f(y)+f(z)` with `f(1)=1` and `f(2)=2` and `x,y, z epsilonR` the value of `lim_(xtooo)sum_(r=1)^(n)((4r)f(3r))/(n^(3))` is ……….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given functional equation and the limit we need to evaluate. ### Step 1: Understanding the functional equation We have the functional equation: \[ f(x+y+z) = f(x) + f(y) + f(z) \] This suggests that \( f \) is a linear function. We also know: \[ f(1) = 1 \] \[ f(2) = 2 \] ### Step 2: Finding the form of \( f(x) \) From the functional equation, we can deduce that \( f \) is likely of the form \( f(x) = kx \) for some constant \( k \). Using the given values: - For \( f(1) = 1 \): \[ k \cdot 1 = 1 \implies k = 1 \] - For \( f(2) = 2 \): \[ k \cdot 2 = 2 \implies k = 1 \] Thus, we conclude: \[ f(x) = x \] ### Step 3: Substitute \( f(3r) \) into the limit Now, we need to evaluate the limit: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{4r f(3r)}{n^3} \] Since \( f(3r) = 3r \), we can substitute this into the expression: \[ = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{4r \cdot 3r}{n^3} \] \[ = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{12r^2}{n^3} \] ### Step 4: Simplifying the summation The summation can be expressed as: \[ = \lim_{n \to \infty} \frac{12}{n^3} \sum_{r=1}^{n} r^2 \] Using the formula for the sum of squares: \[ \sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6} \] Substituting this into our limit: \[ = \lim_{n \to \infty} \frac{12}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} \] \[ = \lim_{n \to \infty} \frac{2n(n+1)(2n+1)}{n^3} \] ### Step 5: Simplifying further Now we simplify the expression: \[ = \lim_{n \to \infty} \frac{2(2n^3 + 3n^2 + n)}{n^3} \] \[ = \lim_{n \to \infty} 2 \left( 2 + \frac{3}{n} + \frac{1}{n^2} \right) \] ### Step 6: Evaluating the limit As \( n \to \infty \): \[ \frac{3}{n} \to 0 \quad \text{and} \quad \frac{1}{n^2} \to 0 \] Thus, we have: \[ = 2(2 + 0 + 0) = 4 \] ### Final Answer The value of the limit is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|9 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise MATCHING TYPE QUESTIONS|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If f(x+y)=f(x).f(y) and f(1)=4 .Find sum_(r=1)^n f(r)

If f(x+ y) = f(x) + f(y) for x, y in R and f(1) = 1 , then find the value of lim_(x->0)(2^(f(tan x)-2^f(sin x)))/(x^2*f(sin x))

If f(x)=(a^x)/(a^x+sqrt(a ,)),(a >0), then find the value of sum_(r=1)^(2n1)2f(r/(2n))

If 2f(xy) =(f(x))^(y) + (f(y))^(x) for all x, y in R and f(1) =3 , then the value of sum_(t=1)^(10) f(r) is equal to

If f(x+y)=f(x) xx f(y) for all x,y in R and f(5)=2, f'(0)=3, then f'(5)=

Let f(x+1/y) +f(x-1/y) =2f(x) f(1/y) AA x, y in R , y!=0 and f(0)=0 then the value of f(1) +f(2)=

If f(x)=(4+x)^(n),"n" epsilonN and f^(r)(0) represents the r^(th) derivative of f(x) at x=0 , then the value of sum_(r=0)^(oo)((f^(r)(0)))/(r!) is equal to

If f(x) satisfies the relation f(x+y)=f(x)+f(y) for all x , y in Ra n df(1)=5,t h e n f(x)i sa nod dfu n c t ion f(x) is an even function sum_(n=1)^mf(r)=5^(m+1)C_2 sum_(n=1)^mf(r)=(5m(m+2))/3

For x in R , x ne0, 1, let f_(0)(x)=(1)/(1-x) and f_(n+1)(x)=f_(0)(f_(n)(x)),n=0,1,2….. Then the value of f_(100)(3)+f_(1)((2)/(3))+f_(2)((3)/(2)) is equal to

If f(x+f(y))=f(x)+yAAx ,y in R a n df(0)=1, then find the value of f(7)dot

ARIHANT MATHS ENGLISH-LIMITS-Exercise (Single Integer Answer Type Questions)
  1. Express in the form of complax number if z= i^5

    Text Solution

    |

  2. If the two AB:(int(0)^(2t)((sinx)/x+1)dx)x+y=3t and AC:2tx+y=0 interse...

    Text Solution

    |

  3. Find dy/dx if e^x=logy-sinx

    Text Solution

    |

  4. If L=lim(xto(pi^(+))/2)(costan^(-1)(tanx))/(x-pi//2) then cos(2piL) is

    Text Solution

    |

  5. Number of solutions of the equation csctheta=k in [0,pi] where k=lim(n...

    Text Solution

    |

  6. If C satisfies the equation lim(xto oo)((x+c)/(x-c))^(x)=4 then |(e^(c...

    Text Solution

    |

  7. If lim(xto-oo)((3x^(4)+2x^(2)).sin(1/x)+|x|^(3)+5)/(|x|^(3)+|x^(2)|+|x...

    Text Solution

    |

  8. If f(x)=lim(t to 0)[(2x)/(pi).tan^(-1)(x/(t^(2)))],then f(1) is …….

    Text Solution

    |

  9. Differentiate x^3 - 5 sinx w.r.t x

    Text Solution

    |

  10. If l=lim(xto1^(+))2^(-2^(1/(1-x))) and m=lim(xto1^(+))(x sin (x-[x]))/...

    Text Solution

    |

  11. The value of lim(xto 0)[(sinx.tanx)/(x^(2))] is …….. (where [.] deno...

    Text Solution

    |

  12. underset(nrarroo)limunderset(r=1)overset(n)Sigma(r)/(1xx3xx5xx7xx9xx.....

    Text Solution

    |

  13. Find dy/dx if y= sin^4x

    Text Solution

    |

  14. If f(x+y+z)=f(x)+f(y)+f(z) with f(1)=1 and f(2)=2 and x,y, z epsilonR ...

    Text Solution

    |

  15. If underset(ntooo)lim(n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then ...

    Text Solution

    |

  16. The value of lim(x->oo)(((x-1)(x-2)(x+3)(x+10)(x+15))^(1/5)-x) is .....

    Text Solution

    |

  17. If lim(xto oo)([f(x)]+x^(2)){f(x)}=k, where f(x)=(tanx)/x and [.],{.} ...

    Text Solution

    |

  18. Let p(x) be a polynomial of degree 4 having extremum at x = 1,2 and l...

    Text Solution

    |

  19. If alpha is the number of solution of |x|=log(x-[x]), (where [.] denot...

    Text Solution

    |

  20. Suppose x1=tan^-1 2 >x2>x3>.... are the real numbers satisfying sin(...

    Text Solution

    |