Home
Class 12
MATHS
The value of lim(x->oo)(((x-1)(x-2)(x+3...

The value of `lim_(x->oo)(((x-1)(x-2)(x+3)(x+10)(x+15))^(1/5)-x)` is ....

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \left( ((x-1)(x-2)(x+3)(x+10)(x+15))^{1/5} - x \right) \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ \lim_{x \to \infty} \left( ((x-1)(x-2)(x+3)(x+10)(x+15))^{1/5} - x \right) \] ### Step 2: Factor out \( x \) from each term inside the product We can factor \( x \) out of each term in the product: \[ (x-1) = x(1 - \frac{1}{x}, \quad (x-2) = x(1 - \frac{2}{x}), \quad (x+3) = x(1 + \frac{3}{x}), \quad (x+10) = x(1 + \frac{10}{x}), \quad (x+15) = x(1 + \frac{15}{x}) \] Thus, we have: \[ (x-1)(x-2)(x+3)(x+10)(x+15) = x^5 \left( (1 - \frac{1}{x})(1 - \frac{2}{x})(1 + \frac{3}{x})(1 + \frac{10}{x})(1 + \frac{15}{x}) \right) \] ### Step 3: Substitute back into the limit Now substituting back into the limit gives: \[ \lim_{x \to \infty} \left( \left( x^5 \left( (1 - \frac{1}{x})(1 - \frac{2}{x})(1 + \frac{3}{x})(1 + \frac{10}{x})(1 + \frac{15}{x}) \right) \right)^{1/5} - x \right) \] ### Step 4: Simplify the expression Taking the fifth root of \( x^5 \) gives \( x \): \[ \lim_{x \to \infty} \left( x \left( (1 - \frac{1}{x})(1 - \frac{2}{x})(1 + \frac{3}{x})(1 + \frac{10}{x})(1 + \frac{15}{x}) \right)^{1/5} - x \right) \] This simplifies to: \[ \lim_{x \to \infty} x \left( (1 - \frac{1}{x})(1 - \frac{2}{x})(1 + \frac{3}{x})(1 + \frac{10}{x})(1 + \frac{15}{x})^{1/5} - 1 \right) \] ### Step 5: Expand the product using the approximation Using the approximation \( (1 + u)^{n} \approx 1 + nu \) for small \( u \): \[ (1 - \frac{1}{x})(1 - \frac{2}{x})(1 + \frac{3}{x})(1 + \frac{10}{x})(1 + \frac{15}{x}) \approx 1 - \frac{1}{x} - \frac{2}{x} + \frac{3}{x} + \frac{10}{x} + \frac{15}{x} \] Combining these gives: \[ 1 + \left( -\frac{1}{x} - \frac{2}{x} + \frac{3}{x} + \frac{10}{x} + \frac{15}{x} \right) = 1 + \frac{25}{x} \] ### Step 6: Substitute back into the limit Now substituting back gives: \[ \lim_{x \to \infty} x \left( \left(1 + \frac{25}{x}\right)^{1/5} - 1 \right) \] Using the approximation again: \[ \left(1 + \frac{25}{x}\right)^{1/5} \approx 1 + \frac{5}{5} \cdot \frac{25}{x} = 1 + \frac{5}{x} \] Thus, we have: \[ \lim_{x \to \infty} x \left( \frac{5}{x} \right) = 5 \] ### Final Answer Therefore, the value of the limit is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|9 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise MATCHING TYPE QUESTIONS|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x->oo)(1+1/x^n)^x,n>0 is

The value of lim_(xrarroo) ((x+3)/(x-1))^(x+1) is

Find the value of lim_(x->oo)(2-1/x+4/x^2)

lim_(x->oo)sin(1/x)/(1/x)

The value of lim_(x->oo)(pi/2-tan^(- 1)x)^(1/x^2), is

The value of lim_(xrarr oo) x{(1)/(e)-((x)/(x+1))^x} , is

The value of lim_(xto oo)(x+2)tan^(-1)(x+2)-(xtan^(-1)x) is

Evaluate : lim_(x to oo) ((x-3)/(x+3))^(x+3)

The value of lim_(x->oo)(int_0^x(tan^(-1)x)^2)/(sqrt(x^2+1))dx

The value of lim_(x to oo)((1+3x)/(2+3x))^((1-sqrt(x))/(1-x)) is

ARIHANT MATHS ENGLISH-LIMITS-Exercise (Single Integer Answer Type Questions)
  1. Express in the form of complax number if z= i^5

    Text Solution

    |

  2. If the two AB:(int(0)^(2t)((sinx)/x+1)dx)x+y=3t and AC:2tx+y=0 interse...

    Text Solution

    |

  3. Find dy/dx if e^x=logy-sinx

    Text Solution

    |

  4. If L=lim(xto(pi^(+))/2)(costan^(-1)(tanx))/(x-pi//2) then cos(2piL) is

    Text Solution

    |

  5. Number of solutions of the equation csctheta=k in [0,pi] where k=lim(n...

    Text Solution

    |

  6. If C satisfies the equation lim(xto oo)((x+c)/(x-c))^(x)=4 then |(e^(c...

    Text Solution

    |

  7. If lim(xto-oo)((3x^(4)+2x^(2)).sin(1/x)+|x|^(3)+5)/(|x|^(3)+|x^(2)|+|x...

    Text Solution

    |

  8. If f(x)=lim(t to 0)[(2x)/(pi).tan^(-1)(x/(t^(2)))],then f(1) is …….

    Text Solution

    |

  9. Differentiate x^3 - 5 sinx w.r.t x

    Text Solution

    |

  10. If l=lim(xto1^(+))2^(-2^(1/(1-x))) and m=lim(xto1^(+))(x sin (x-[x]))/...

    Text Solution

    |

  11. The value of lim(xto 0)[(sinx.tanx)/(x^(2))] is …….. (where [.] deno...

    Text Solution

    |

  12. underset(nrarroo)limunderset(r=1)overset(n)Sigma(r)/(1xx3xx5xx7xx9xx.....

    Text Solution

    |

  13. Find dy/dx if y= sin^4x

    Text Solution

    |

  14. If f(x+y+z)=f(x)+f(y)+f(z) with f(1)=1 and f(2)=2 and x,y, z epsilonR ...

    Text Solution

    |

  15. If underset(ntooo)lim(n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then ...

    Text Solution

    |

  16. The value of lim(x->oo)(((x-1)(x-2)(x+3)(x+10)(x+15))^(1/5)-x) is .....

    Text Solution

    |

  17. If lim(xto oo)([f(x)]+x^(2)){f(x)}=k, where f(x)=(tanx)/x and [.],{.} ...

    Text Solution

    |

  18. Let p(x) be a polynomial of degree 4 having extremum at x = 1,2 and l...

    Text Solution

    |

  19. If alpha is the number of solution of |x|=log(x-[x]), (where [.] denot...

    Text Solution

    |

  20. Suppose x1=tan^-1 2 >x2>x3>.... are the real numbers satisfying sin(...

    Text Solution

    |