Home
Class 12
MATHS
Suppose x1=tan^-1 2 >x2>x3>.... are the...

Suppose `x_1=tan^-1 2 >x_2>x_3>....` are the real numbers satisfying `sin(x_(n+1)-x_n)+2^-(n+1)*sin x_n*sinx_(n+1)` for all `n> 1` and `l=lim_(x->oo) x_n` , the value of `[4l]` is...where [t] denotes greatest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given equation and derive the limit \( l \) as \( n \) approaches infinity. ### Step 1: Understand the given equation We are given that: \[ \sin(x_{n+1} - x_n) + 2^{-(n+1)} \sin x_n \sin x_{n+1} = 0 \] This implies: \[ \sin(x_{n+1} - x_n) = -2^{-(n+1)} \sin x_n \sin x_{n+1} \] ### Step 2: Use the sine subtraction formula Using the sine subtraction formula, we can rewrite the left-hand side: \[ \sin(x_{n+1}) \cos(x_n) - \cos(x_{n+1}) \sin(x_n) = -2^{-(n+1)} \sin x_n \sin x_{n+1} \] ### Step 3: Rearranging the equation Dividing both sides by \( \sin x_n \sin x_{n+1} \) (assuming they are non-zero), we get: \[ \frac{\sin(x_{n+1}) \cos(x_n)}{\sin x_n \sin x_{n+1}} - \frac{\cos(x_{n+1}) \sin(x_n)}{\sin x_n \sin x_{n+1}} = -2^{-(n+1)} \] ### Step 4: Simplifying the equation This simplifies to: \[ \cot(x_n) - \cot(x_{n+1}) = 2^{-(n+1)} \] ### Step 5: Summing the differences We can sum the differences from \( n = 1 \) to \( n = N \): \[ \cot(x_1) - \cot(x_{N+1}) = \sum_{n=1}^{N} 2^{-(n+1)} \] The right-hand side is a geometric series: \[ \sum_{n=1}^{N} 2^{-(n+1)} = \frac{1/4(1 - (1/2)^N)}{1 - 1/2} = \frac{1}{2}(1 - (1/2)^N) \] ### Step 6: Finding the limit As \( N \to \infty \): \[ \cot(x_1) - \cot(x_{N+1}) = \frac{1}{2}(1 - 0) = \frac{1}{2} \] Thus, \[ \cot(x_{N+1}) \to \cot(x_1) - \frac{1}{2} \] ### Step 7: Substitute \( x_1 = \tan^{-1}(2) \) Since \( x_1 = \tan^{-1}(2) \), we have: \[ \cot(x_1) = \frac{1}{\tan(x_1)} = \frac{1}{2} \] Therefore: \[ \cot(x_{N+1}) \to \frac{1}{2} - \frac{1}{2} = 0 \] ### Step 8: Finding \( l \) Thus, as \( n \to \infty \): \[ \cot(x_{N+1}) \to 0 \implies x_{N+1} \to \frac{\pi}{2} \] So, we have: \[ l = \lim_{n \to \infty} x_n = \frac{\pi}{2} \] ### Step 9: Calculate \( 4l \) Now, we calculate: \[ 4l = 4 \cdot \frac{\pi}{2} = 2\pi \] ### Step 10: Apply the greatest integer function The value of \( 2\pi \) is approximately \( 6.28 \), so: \[ \lfloor 2\pi \rfloor = 6 \] ### Final Answer Thus, the value of \( [4l] \) is: \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|9 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise MATCHING TYPE QUESTIONS|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

lim_(x->pi/2) sinx/(cos^-1[1/4(3sinx-sin3x)]) where [] denotes greatest integer function id:

f(x) = lim_(n->oo) sin^(2n)(pix)+[x+1/2] , where [.] denotes the greatest integer function, is

lim_(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the greatest integer function, is

The value of lim_(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] denotes the greatest integer function is

If l=lim_(xto1^(+))2^(-2^(1/(1-x))) and m=lim_(xto1^(+))(x sin (x-[x]))/(x-1) (where [.] denotes greatest integer function). Then (l+m) is ………….

Prove that: \ sin x+sin3x++sin(2n-1)x=(sin^2\ \ n x)/(sin x) for all n in NN

The range of f(x)=[1+sinx]+[2+sin(x/2)]+[3+sin (x/3)]+....+[n+sin (x/n)]AAx in [0,pi] , where [.] denotes the greatest integer function, is,

If x_1=sqrt(3) and x_(n+1)=(x_n)/(1+sqrt(1+x_ n^2)),AA n in N then lim_(n->oo)2^n x_n is equal to

If x_(1)=3 and x_(n+1)=sqrt(2+x_(n))" ",nge1, then lim_(ntooo) x_(n) is

The value of lim_(x->oo)(1+1/x^n)^x,n>0 is

ARIHANT MATHS ENGLISH-LIMITS-Exercise (Single Integer Answer Type Questions)
  1. Express in the form of complax number if z= i^5

    Text Solution

    |

  2. If the two AB:(int(0)^(2t)((sinx)/x+1)dx)x+y=3t and AC:2tx+y=0 interse...

    Text Solution

    |

  3. Find dy/dx if e^x=logy-sinx

    Text Solution

    |

  4. If L=lim(xto(pi^(+))/2)(costan^(-1)(tanx))/(x-pi//2) then cos(2piL) is

    Text Solution

    |

  5. Number of solutions of the equation csctheta=k in [0,pi] where k=lim(n...

    Text Solution

    |

  6. If C satisfies the equation lim(xto oo)((x+c)/(x-c))^(x)=4 then |(e^(c...

    Text Solution

    |

  7. If lim(xto-oo)((3x^(4)+2x^(2)).sin(1/x)+|x|^(3)+5)/(|x|^(3)+|x^(2)|+|x...

    Text Solution

    |

  8. If f(x)=lim(t to 0)[(2x)/(pi).tan^(-1)(x/(t^(2)))],then f(1) is …….

    Text Solution

    |

  9. Differentiate x^3 - 5 sinx w.r.t x

    Text Solution

    |

  10. If l=lim(xto1^(+))2^(-2^(1/(1-x))) and m=lim(xto1^(+))(x sin (x-[x]))/...

    Text Solution

    |

  11. The value of lim(xto 0)[(sinx.tanx)/(x^(2))] is …….. (where [.] deno...

    Text Solution

    |

  12. underset(nrarroo)limunderset(r=1)overset(n)Sigma(r)/(1xx3xx5xx7xx9xx.....

    Text Solution

    |

  13. Find dy/dx if y= sin^4x

    Text Solution

    |

  14. If f(x+y+z)=f(x)+f(y)+f(z) with f(1)=1 and f(2)=2 and x,y, z epsilonR ...

    Text Solution

    |

  15. If underset(ntooo)lim(n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then ...

    Text Solution

    |

  16. The value of lim(x->oo)(((x-1)(x-2)(x+3)(x+10)(x+15))^(1/5)-x) is .....

    Text Solution

    |

  17. If lim(xto oo)([f(x)]+x^(2)){f(x)}=k, where f(x)=(tanx)/x and [.],{.} ...

    Text Solution

    |

  18. Let p(x) be a polynomial of degree 4 having extremum at x = 1,2 and l...

    Text Solution

    |

  19. If alpha is the number of solution of |x|=log(x-[x]), (where [.] denot...

    Text Solution

    |

  20. Suppose x1=tan^-1 2 >x2>x3>.... are the real numbers satisfying sin(...

    Text Solution

    |