Home
Class 12
MATHS
Evaluate the following limits: lim(xto...

Evaluate the following limits:
`lim_(xto pi)(sqrt(2+cosx)-1)/((pi-x)^(2))`

A

`1/4`

B

`1/2`

C

`2`

D

Doesn't exist

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{(\pi - x)^2}, \] we will follow these steps: ### Step 1: Substitute \( x = \pi \) First, we substitute \( x = \pi \) into the expression: \[ \sqrt{2 + \cos(\pi)} - 1 = \sqrt{2 - 1} - 1 = \sqrt{1} - 1 = 0, \] and \[ (\pi - \pi)^2 = 0. \] This gives us the indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have the \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule. We differentiate the numerator and the denominator: - **Numerator**: The derivative of \( \sqrt{2 + \cos x} - 1 \) is \[ \frac{1}{2\sqrt{2 + \cos x}} \cdot (-\sin x) = -\frac{\sin x}{2\sqrt{2 + \cos x}}. \] - **Denominator**: The derivative of \( (\pi - x)^2 \) is \[ 2(\pi - x)(-1) = -2(\pi - x). \] ### Step 3: Rewrite the limit Now we rewrite the limit using these derivatives: \[ \lim_{x \to \pi} \frac{-\frac{\sin x}{2\sqrt{2 + \cos x}}}{-2(\pi - x)} = \lim_{x \to \pi} \frac{\sin x}{4(\pi - x)\sqrt{2 + \cos x}}. \] ### Step 4: Substitute \( x = \pi \) again Now we substitute \( x = \pi \): \[ \sin(\pi) = 0, \] and \[ \sqrt{2 + \cos(\pi)} = \sqrt{2 - 1} = 1. \] Thus, we have another \( \frac{0}{0} \) form. We apply L'Hôpital's Rule again. ### Step 5: Differentiate again We differentiate the numerator and denominator again: - **Numerator**: The derivative of \( \sin x \) is \( \cos x \). - **Denominator**: Using the product rule on \( 4(\pi - x)\sqrt{2 + \cos x} \): \[ 4\left(-\sqrt{2 + \cos x} + (\pi - x) \cdot \frac{-\sin x}{2\sqrt{2 + \cos x}}\right). \] ### Step 6: Rewrite the limit again Now we have: \[ \lim_{x \to \pi} \frac{\cos x}{4\left(-\sqrt{2 + \cos x} + (\pi - x) \cdot \frac{-\sin x}{2\sqrt{2 + \cos x}}\right)}. \] ### Step 7: Substitute \( x = \pi \) again Substituting \( x = \pi \): \[ \cos(\pi) = -1, \] and \[ \sqrt{2 + \cos(\pi)} = 1. \] Thus, we have: \[ 4\left(-1 + 0\right) = -4. \] ### Step 8: Final limit evaluation Putting it all together: \[ \lim_{x \to \pi} \frac{-1}{-4} = \frac{1}{4}. \] ### Conclusion Thus, the limit is \[ \frac{1}{4}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|4 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(x->pi)(sqrt(5+cos x)-2)/((pi-x)^2)

Evaluate the following limits: Lim_( x to pi/2 )(1-sin x)/((pi/2-x)^(2))

Evaluate the following limits : Lim_(xto pi) (sin 2x)/(sinx)

Evaluate the following limit: lim_(x->pi/2)(e^(cos x)-1)/(cos x)

Evaluate the following limits : Lim_(x to pi/2) (e^(sin x)-1)/(sin x)

Evaluate the following limit: (lim)_(x->pi/4)(sqrt(2)-cos x-sin x)/((pi/4-x)^2)

Evaluate the following limit: (lim)_(x->pi/3)(sqrt(3)-t a n x)/(pi-3x)

Evaluate the following limits : lim _( xto pi) ( sin x)/(pi - x)

Evaluate the following limit : Lim_(x to pi/2) (1+cos 2x)/(pi-2x)^(2)

Evaluate the following limits: Lim_( x to pi/2 ) (cos x)/(pi/2-x)