Home
Class 12
MATHS
If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(...

If `f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(1//x)))",",x ne 0),(" "0",",x = 0):}`, then at `x = 0`, then `f(x)` is

A

differentiable

B

not differentiable

C

`f'(0^(+))=-1`

D

`f'(0^(-))=1`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the differentiability of the function \( f(x) \) at \( x = 0 \), we need to analyze the function given by: \[ f(x) = \begin{cases} \frac{x \left( e^{\frac{1}{x}} - e^{-\frac{1}{x}} \right)}{e^{\frac{1}{x}} + e^{-\frac{1}{x}}}, & x \neq 0 \\ 0, & x = 0 \end{cases} \] ### Step 1: Find \( f(0) \) Since the function is defined as \( f(0) = 0 \), we have: \[ f(0) = 0 \] ### Step 2: Find the left-hand derivative \( f'(0^-) \) The left-hand derivative is defined as: \[ f'(0^-) = \lim_{h \to 0^-} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0^-} \frac{f(h)}{h} \] For \( h < 0 \), we substitute into the function: \[ f(h) = \frac{h \left( e^{\frac{1}{h}} - e^{-\frac{1}{h}} \right)}{e^{\frac{1}{h}} + e^{-\frac{1}{h}}} \] Thus, we have: \[ f'(0^-) = \lim_{h \to 0^-} \frac{1}{h} \cdot \frac{h \left( e^{\frac{1}{h}} - e^{-\frac{1}{h}} \right)}{e^{\frac{1}{h}} + e^{-\frac{1}{h}}} \] This simplifies to: \[ f'(0^-) = \lim_{h \to 0^-} \frac{e^{\frac{1}{h}} - e^{-\frac{1}{h}}}{e^{\frac{1}{h}} + e^{-\frac{1}{h}}} \] As \( h \to 0^- \), \( e^{\frac{1}{h}} \to 0 \) and \( e^{-\frac{1}{h}} \to \infty \). Therefore, we can simplify: \[ f'(0^-) = \lim_{h \to 0^-} \frac{0 - \infty}{0 + \infty} = \lim_{h \to 0^-} -1 = -1 \] ### Step 3: Find the right-hand derivative \( f'(0^+) \) The right-hand derivative is defined as: \[ f'(0^+) = \lim_{h \to 0^+} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0^+} \frac{f(h)}{h} \] For \( h > 0 \), we substitute into the function: \[ f(h) = \frac{h \left( e^{\frac{1}{h}} - e^{-\frac{1}{h}} \right)}{e^{\frac{1}{h}} + e^{-\frac{1}{h}}} \] Thus, we have: \[ f'(0^+) = \lim_{h \to 0^+} \frac{1}{h} \cdot \frac{h \left( e^{\frac{1}{h}} - e^{-\frac{1}{h}} \right)}{e^{\frac{1}{h}} + e^{-\frac{1}{h}}} \] This simplifies to: \[ f'(0^+) = \lim_{h \to 0^+} \frac{e^{\frac{1}{h}} - e^{-\frac{1}{h}}}{e^{\frac{1}{h}} + e^{-\frac{1}{h}}} \] As \( h \to 0^+ \), \( e^{\frac{1}{h}} \to \infty \) and \( e^{-\frac{1}{h}} \to 0 \). Therefore, we can simplify: \[ f'(0^+) = \lim_{h \to 0^+} \frac{\infty - 0}{\infty + 0} = \lim_{h \to 0^+} 1 = 1 \] ### Step 4: Conclusion Since \( f'(0^-) = -1 \) and \( f'(0^+) = 1 \), we find that: \[ f'(0^-) \neq f'(0^+) \] Thus, \( f(x) \) is not differentiable at \( x = 0 \). ### Final Answer Therefore, at \( x = 0 \), \( f(x) \) is **not differentiable**. ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|9 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|48 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|3 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

Let f(x) = {{:((cos x-e^(x^(2)//2))/(x^(3))",",x ne 0),(0",",x = 0):} , then Statement I f(x) is continuous at x = 0. Statement II lim_(x to 0 )(cos x-e^(x^(2)//2))/(x^(3)) = - (1)/(12)

If f(x)={{:((e^((2)/(x))-1)/(e^((2)/(x))+1),:,x ne 0),(0,:,x=0):} , then f(x) is

If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

Check the continuity of f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0

If f(x)= {{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

If f(x)={{:(,(e^(x[x])-1)/(x+[x]),x ne 0),(,1,x=0):} then

f(x)=e^(x)/([x+1]),x ge 0