Home
Class 12
MATHS
On the interval I=[-2,2], the function f...

On the interval `I=[-2,2]`, the function `f(x)={{:(,(x+1)e^(-((1)/(|x|)+(1)/(x))),x ne 0),(,0,x=0):}`

A

f(x) is continuous for all values of `x in I`

B

f(x) is continuous for `x in I - {0}`

C

f(x) assumes all intermediate values from f(-2) to f(2)

D

f(x) has a maximum value equal to 3/e

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) defined as follows: \[ f(x) = \begin{cases} (x + 1)e^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] We will check the continuity of \( f(x) \) on the interval \( I = [-2, 2] \). ### Step 1: Check continuity at \( x = 0 \) To check continuity at \( x = 0 \), we need to evaluate the limit of \( f(x) \) as \( x \) approaches 0 from both sides and compare it to \( f(0) \). 1. **Limit as \( x \to 0^- \)** (approaching from the left): \[ f(x) = (x + 1)e^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)} = (x + 1)e^{-\left(\frac{1}{-x} + \frac{1}{x}\right)} = (x + 1)e^{-\left(-\frac{1}{x} + \frac{1}{x}\right)} = (x + 1)e^{0} = x + 1 \] Thus, \[ \lim_{x \to 0^-} f(x) = 1. \] 2. **Limit as \( x \to 0^+ \)** (approaching from the right): \[ f(x) = (x + 1)e^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)} = (x + 1)e^{-\left(\frac{1}{x} + \frac{1}{x}\right)} = (x + 1)e^{-\frac{2}{x}}. \] As \( x \to 0^+ \), \( e^{-\frac{2}{x}} \) approaches 0 very quickly, hence: \[ \lim_{x \to 0^+} f(x) = (0 + 1) \cdot 0 = 0. \] 3. **Evaluate \( f(0) \)**: \[ f(0) = 0. \] Since \( \lim_{x \to 0^-} f(x) = 1 \) and \( \lim_{x \to 0^+} f(x) = 0 \), we see that: \[ \lim_{x \to 0} f(x) \text{ does not exist.} \] Thus, \( f(x) \) is not continuous at \( x = 0 \). ### Step 2: Check continuity for \( x \neq 0 \) For \( x \in [-2, 2] \) and \( x \neq 0 \), the function \( f(x) = (x + 1)e^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)} \) is continuous since it is a product of continuous functions. ### Conclusion The function \( f(x) \) is continuous on the interval \( I = [-2, 2] \) except at \( x = 0 \). Therefore, we conclude that \( f(x) \) is continuous on \( I \setminus \{0\} \). ### Final Answer The function \( f(x) \) is continuous for \( x \in I \setminus \{0\} \). ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise EXERCISE 4|3 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|48 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

If f(x)= {{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):} , then

If f(x)={{:(,(e^(x[x])-1)/(x+[x]),x ne 0),(,1,x=0):} then

If f(x)= {{:(,(x log cos x)/(log(1+x^(2))),x ne 0),(,0,x=0):} then

If f(x)={{:((e^((2)/(x))-1)/(e^((2)/(x))+1),:,x ne 0),(0,:,x=0):} , then f(x) is

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

Test the continnuity of f(x) at x=0 if f(x) ={{:((x+1)^(2-((1)/(|x|)+(1)/(x))), x ne 0 ),( 1,x = 0):}.

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

ARIHANT MATHS ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Exercise (More Than One Correct Option Type Questions)
  1. Function whose jump (non-negative difference of LHL and RHL) of discon...

    Text Solution

    |

  2. Indicate all correct alternatives: if f(x) = x/2-1, then on the interv...

    Text Solution

    |

  3. On the interval I=[-2,2], the function f(x)={{:(,(x+1)e^(-((1)/(|x|)+(...

    Text Solution

    |

  4. Given f(x)={3-[cot^(-1)((2x^3-3)/(x^2))] for x >0 and {x^2}cos(e^(...

    Text Solution

    |

  5. If f(x) = {{:(b([x]^(2)+[x])+1",","for",x gt -1),(sin(pi(x + a))",","f...

    Text Solution

    |

  6. Find dy/dx if y= x/tanx

    Text Solution

    |

  7. If f(x) = |x+1|(|x|+|x-1|), then at what point(s) is the function not ...

    Text Solution

    |

  8. Let [x] be the greatest integer function f(x)=(sin(1/4(pi[x]))/([x])) ...

    Text Solution

    |

  9. {:(f(x) = cos x and H(1)(x) = min{f(t), 0 le t lt x},),(0 le x le (pi)...

    Text Solution

    |

  10. If f(x) = 3(2x + 3)^(2//3) + 2x + 3, then:

    Text Solution

    |

  11. if f(x) ={{:(-x=(pi)/(2),xle -(pi)/(2)),(- cos x, -(pi)/(2)lt x ,le 0...

    Text Solution

    |

  12. if f(x) ={{:( (x log cos x)/( log( 1+x^(2) )), x ne 0) ,( 0, x=0):}

    Text Solution

    |

  13. Let [x] denote the greatest integer less that or equal to x. If f(x) =...

    Text Solution

    |

  14. The function f(x)=x-[x] , where [⋅] denotes the greatest integer fu...

    Text Solution

    |

  15. The function f(x)=sqrt(1-sqrt(1-x^2))

    Text Solution

    |

  16. Consider the function f(x) = |x^(3) + 1|. Then,

    Text Solution

    |

  17. about to only mathematics

    Text Solution

    |

  18. Which of the following function(s) has/have the same range ?

    Text Solution

    |

  19. If f(x) = sec 2x + cosec 2x, then f(x) is discontinuous at all points ...

    Text Solution

    |

  20. Show that the function f(x)={x^msin(1/x),\ \ \ x!=0 , 0\ \ x=0 is con...

    Text Solution

    |