Home
Class 12
MATHS
Given f(x)={3-[cot^(-1)((2x^3-3)/(x^2))]...

Given `f(x)={3-[cot^(-1)((2x^3-3)/(x^2))] for x >0 and {x^2}cos(e^(1/x)) for x<0` (where {} and [] denotes the fractional part and the integral part functions respectively). Then which of the following statements do/does not hold good?

A

`f(0^(0-)) = 0`

B

`f(0^(+)) = 0`

C

`f(0) = 0 rArr` Continuous at x = 0

D

Irremovable discontinuity at x = 0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given piecewise function and determine the continuity at \( x = 0 \). ### Step 1: Define the function The function is defined as: \[ f(x) = \begin{cases} 3 - \lfloor \cot^{-1}\left(\frac{2x^3 - 3}{x^2}\right) \rfloor & \text{for } x > 0 \\ x^2 \cos\left(e^{\frac{1}{x}}\right) & \text{for } x < 0 \end{cases} \] ### Step 2: Find the right-hand limit as \( x \to 0^+ \) For \( x > 0 \): \[ f(x) = 3 - \lfloor \cot^{-1}\left(\frac{2x^3 - 3}{x^2}\right) \rfloor \] As \( x \to 0^+ \): \[ \frac{2x^3 - 3}{x^2} \to \frac{-3}{0^+} \to -\infty \] Thus, \( \cot^{-1}(-\infty) = \pi \). Therefore: \[ \lfloor \cot^{-1}\left(\frac{2x^3 - 3}{x^2}\right) \rfloor \to \lfloor \pi \rfloor = 3 \] So, \[ f(0^+) = 3 - 3 = 0 \] ### Step 3: Find the left-hand limit as \( x \to 0^- \) For \( x < 0 \): \[ f(x) = x^2 \cos\left(e^{\frac{1}{x}}\right) \] As \( x \to 0^- \): \[ x^2 \to 0 \quad \text{and} \quad \cos\left(e^{\frac{1}{x}}\right) \text{ oscillates between } -1 \text{ and } 1 \] Thus, the left-hand limit is: \[ f(0^-) = 0 \cdot \text{(bounded value)} = 0 \] ### Step 4: Compare the limits We have: \[ \lim_{x \to 0^+} f(x) = 0 \quad \text{and} \quad \lim_{x \to 0^-} f(x) = 0 \] Since both limits are equal, we can conclude that: \[ \lim_{x \to 0} f(x) = 0 \] ### Step 5: Check continuity at \( x = 0 \) For continuity at \( x = 0 \), we need: \[ \lim_{x \to 0} f(x) = f(0) \] However, \( f(0) \) is not defined in the piecewise function. Therefore, the function is not continuous at \( x = 0 \). ### Conclusion The function \( f(x) \) has a removable discontinuity at \( x = 0 \) since the limits from both sides exist and are equal, but the function is not defined at that point. ### Final Answer The statement that does not hold good is that there is an irreparable discontinuity at \( x = 0 \). ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise EXERCISE 4|3 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|48 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Given f(x)=3x+2 . Find f^(-1)(x)

If f(x)=cot^(-1) ((3x-x^3)/(1-3x^2)) and g(x)=cos^(-1)((1-x^2)/(1+x^2)) then lim_(x->a) (f(x)-f(a))/(g(x)-g(a))

If f (x) = cot ^(-1)((3x -x ^(3))/( 1- 3x ^(2)))and g (x) = cos ^(-1) ((1-x ^(2))/(1+x^(2))) then lim _(xtoa)(f(x) - f(a))/( g(x) -g (a)), 0 ltalt 1/2 is :

Given f(x) = 1/( (x^2 + 2x+1)^(1/3) + (x^2 -1)^(1/3) + (x^2 - 2x + 1)^(1/3)) and E = f(1) + f(3) + f(5) + ............ + f(999), then

Let f(x)={(1-sin^3x)/(3cos^2x) if x pi/2 find a and b. .

Solve for x if (cot^(-1)x)^2-3(cot^(-1)x)+2>0

Solve for x if (cot^(-1)x)^2-3(cot^(-1)x)+2>0

If f(x)=cos^(- 1)x+cos^(- 1){x/2+1/2sqrt(3-3x^2)} then

f(x)=cot^(2)x*cos^(2)x, g(x)=cot^(2)x-cos^(2)x

Find the domain of the following following functions: (a) f(x)=(sin^(-1))/(x) (b) f(x)=sin^(-1)(|x-1|-2) (c ) f(x)=cos^(-1)(1+3x+2x^(2)) (d ) f(x)=(sin^(-1)(x-3))/(sqrt(9-x^(2))) (e ) f(x)="cos"^(-1)((6-3x)/(4))+"cosec"^(-1)((x-1)/(2)) (f) f(x)=sqrt("sec"^(-1)((2-|x|)/(4)))

ARIHANT MATHS ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Exercise (More Than One Correct Option Type Questions)
  1. Indicate all correct alternatives: if f(x) = x/2-1, then on the interv...

    Text Solution

    |

  2. On the interval I=[-2,2], the function f(x)={{:(,(x+1)e^(-((1)/(|x|)+(...

    Text Solution

    |

  3. Given f(x)={3-[cot^(-1)((2x^3-3)/(x^2))] for x >0 and {x^2}cos(e^(...

    Text Solution

    |

  4. If f(x) = {{:(b([x]^(2)+[x])+1",","for",x gt -1),(sin(pi(x + a))",","f...

    Text Solution

    |

  5. Find dy/dx if y= x/tanx

    Text Solution

    |

  6. If f(x) = |x+1|(|x|+|x-1|), then at what point(s) is the function not ...

    Text Solution

    |

  7. Let [x] be the greatest integer function f(x)=(sin(1/4(pi[x]))/([x])) ...

    Text Solution

    |

  8. {:(f(x) = cos x and H(1)(x) = min{f(t), 0 le t lt x},),(0 le x le (pi)...

    Text Solution

    |

  9. If f(x) = 3(2x + 3)^(2//3) + 2x + 3, then:

    Text Solution

    |

  10. if f(x) ={{:(-x=(pi)/(2),xle -(pi)/(2)),(- cos x, -(pi)/(2)lt x ,le 0...

    Text Solution

    |

  11. if f(x) ={{:( (x log cos x)/( log( 1+x^(2) )), x ne 0) ,( 0, x=0):}

    Text Solution

    |

  12. Let [x] denote the greatest integer less that or equal to x. If f(x) =...

    Text Solution

    |

  13. The function f(x)=x-[x] , where [⋅] denotes the greatest integer fu...

    Text Solution

    |

  14. The function f(x)=sqrt(1-sqrt(1-x^2))

    Text Solution

    |

  15. Consider the function f(x) = |x^(3) + 1|. Then,

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. Which of the following function(s) has/have the same range ?

    Text Solution

    |

  18. If f(x) = sec 2x + cosec 2x, then f(x) is discontinuous at all points ...

    Text Solution

    |

  19. Show that the function f(x)={x^msin(1/x),\ \ \ x!=0 , 0\ \ x=0 is con...

    Text Solution

    |

  20. A function is defined as f(x) = {{:(e^(x)",",x le 0),(|x-1|",",x gt 0)...

    Text Solution

    |