Home
Class 12
MATHS
If y=sec^(-1)(sqrt(1+x^(2))), when -1 lt...

If `y=sec^(-1)(sqrt(1+x^(2)))`, when `-1 lt x lt 1,` then find `(dy)/(dx)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise EXAMPLE|3 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise SOLVED EXAMPLES|7 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If y=sin^(-1)(sqrt(1-x^2]) and 0 < x < 1, then find (dy)/(dx)

y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1 . find dy/dx

If y=sec^(-1)(1/(2x^2-1));0ltxlt (sqrt(2)), ="" then="" find="" (dy)/(dx)

If y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2]) and 0

If y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2]) and 0 < x < 1, then find (dy)/(dx)

y= tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))) , where -1 < x < 1 , find dy/dx

If y=m^(2)sec^(-1)x, then find (dy)/(dx) .

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1 find dy/dx

y = sin ^(-1)(2xsqrt(1 - x^(2))),-(1)/sqrt(2) lt x lt (1)/sqrt(2)