Home
Class 12
MATHS
If x=a(cost+1/2logtan^2t) and y=asint th...

If `x=a(cost+1/2logtan^2t)` and `y=asint` then find `(dy)/(dx)` at `t=pi/4`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise EXAMPLE|3 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise SOLVED EXAMPLES|7 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If x=a(cost+1/2logtan'(t)/(2) and y=asint then find (dy)/(dx) at t=pi/4

If x=a(cos2t+2tsin2t) and y=a(sin2t-2tcos2t) , then find (dy)/(dx) .

If x=2 and y=a t^2 ,then find dy/dx

If x=f(t) and y=g(t) , then find (dy)/(dx)

If x=a(cost+logtan(t/2)) , y=asint , evaluate (dy)/(dx) .

If x=a t^2,\ \ y=2\ a t , then find (dy)/(dx)

If x=a{costheta+logtan""(theta)/(2)}" and "y=asintheta, then (dy)/(dx) is equal to

If x=a(cost+tsint) and y=a(sint-tcost), then find the value of (d^2y)/(dx^2) at t=pi/4

If x=cost+logtan(t/2),\ \ y=sint , then find the value of (d^2y)/(dt^2) and (d^2y)/(dx^2) at t=pi/4 .

If x=cost(3-2\ cos^2t) and y=sint(3-2sin^2t) find the value of (dy)/(dx) at t=pi/4