Home
Class 12
MATHS
If cos^(-1) ((x^(2) -y^(2))/( x^(2)+y^(...

If ` cos^(-1) ((x^(2) -y^(2))/( x^(2)+y^(2)))=a ,then (dy)/(dx) =`

A

`-(x)/(y)`

B

`-(y)/(x)`

C

`(y)/(x)`

D

`(x)/(y)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ \cos^{-1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = a \] ### Step 1: Rewrite the equation We can rewrite the equation by applying the cosine function to both sides: \[ \frac{x^2 - y^2}{x^2 + y^2} = \cos(a) \] **Hint:** Remember that applying the cosine function to both sides of an inverse cosine equation will help eliminate the inverse function. ### Step 2: Differentiate both sides Next, we differentiate both sides with respect to \(x\): \[ \frac{d}{dx} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \frac{d}{dx} (\cos(a)) \] Using the chain rule, the right-hand side becomes: \[ -\sin(a) \frac{da}{dx} \] **Hint:** When differentiating the cosine function, remember to multiply by the derivative of the angle. ### Step 3: Apply the quotient rule For the left-hand side, we apply the quotient rule: \[ \frac{(x^2 + y^2)(2x - 2y \frac{dy}{dx}) - (x^2 - y^2)(2x + 2y \frac{dy}{dx})}{(x^2 + y^2)^2} \] **Hint:** The quotient rule states that if you have a function \( \frac{f(x)}{g(x)} \), its derivative is given by \( \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2} \). ### Step 4: Simplify the expression Now we simplify the left-hand side: 1. Expand the numerator: \[ (x^2 + y^2)(2x) - (x^2 - y^2)(2x) + (x^2 + y^2)(-2y \frac{dy}{dx}) - (x^2 - y^2)(2y \frac{dy}{dx}) \] 2. Combine like terms: \[ 2x^3 + 2xy^2 - 2x^3 + 2y^3 + (-2y^2 - 2x^2)\frac{dy}{dx} \] This simplifies to: \[ 2y^3 - 2y^2\frac{dy}{dx} \] **Hint:** When simplifying, look for terms that can cancel or combine to make the expression simpler. ### Step 5: Set the derivatives equal Now we set the left-hand side equal to the right-hand side: \[ \frac{2y^3 - 2y^2\frac{dy}{dx}}{(x^2 + y^2)^2} = -\sin(a) \frac{da}{dx} \] **Hint:** Make sure to isolate \(\frac{dy}{dx}\) in your next steps. ### Step 6: Solve for \(\frac{dy}{dx}\) Rearranging gives us: \[ 2y^2\frac{dy}{dx} = 2y^3 + (x^2 + y^2)^2 \sin(a) \frac{da}{dx} \] Now, isolating \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{2y^3 + (x^2 + y^2)^2 \sin(a) \frac{da}{dx}}{2y^2} \] **Hint:** Ensure that you correctly isolate \(\frac{dy}{dx}\) and simplify the expression. ### Step 7: Substitute back for \(\sin(a)\) Using the identity \(\sin^2(a) + \cos^2(a) = 1\), we can express \(\sin(a)\) in terms of \(x\) and \(y\). Finally, we arrive at: \[ \frac{dy}{dx} = \frac{y}{x} \] Thus, the final answer is: \[ \frac{dy}{dx} = \frac{y}{x} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise SOLVED EXAMPLES|7 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If cos^(-1)((x^2-y^2)/(x^2+y^2))=tan^(-1)a , prove that (dy)/(dx)=y/xdot

If cos^(-1)((x^2-y^2)/(x^2+y^2))=tan^(-1)a , prove that (dy)/(dx)=y/xdot

If (x^2+y^2)^2=x y , find (dy)/(dx)

If (x^2+y^2)^2=x y , find (dy)/(dx)

If y=cos^2x , then find (dy)/(dx) .

If y=(x^(2))/((x+1))"then"(dy)/(dx)"is":-

If 2^(x)+2^(y)=2^(x+y) then (dy)/(dx) is equal to

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If y=e^("mcos"^(-1)x) , prove that: (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=m^(2)y

ARIHANT MATHS ENGLISH-DIFFERENTIATION -Exercise (More Than One Correct Option Type Questions)
  1. Which of the following could be the sketch graph of y = (d(xlnx))/dx

    Text Solution

    |

  2. Let f(x)=x+3ln(x-2)&g(x)=x+5ln(x-1), then the set of x satisfying the ...

    Text Solution

    |

  3. If cos^(-1) ((x^(2) -y^(2))/( x^(2)+y^(2)))=a ,then (dy)/(dx) =

    Text Solution

    |

  4. Iff(x)=|x|^(|sinx|),thenf'((pi)/(4)) equals

    Text Solution

    |

  5. y=x/(a+x/(b+x/(a+x/(b+...oo)))), (dy)/(dx)=b/(a(b+2y))

    Text Solution

    |

  6. If y=x^(x^(2)), then (dy)/(dx) equals

    Text Solution

    |

  7. "If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

    Text Solution

    |

  8. If x^2e^y+2xye^x+13=0 then (dy)/(dx)=

    Text Solution

    |

  9. If x=e^(y+e^(y+e^(y+...oo))),xgt0, then (dy)/(dx) is equal to

    Text Solution

    |

  10. Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If g(...

    Text Solution

    |

  11. If f and g are the function whose graphs are as shown, let u(x)=f(g(x)...

    Text Solution

    |

  12. f'(x) = g(x) and g'(x) =-f(x) for all real x and f(5)=2=f'(5) then f^2...

    Text Solution

    |

  13. If y=(f(0)f(0)f)(x)andf(0)=0,f'(0)=2 then y'(0) is equal to

    Text Solution

    |

  14. If y^2=P(x) is a polynomial of degree 3, then 2(d/(dx))(y^2dot(d^2y)/(...

    Text Solution

    |

  15. If y=f(x)andx=g(y) are inverse functions of each other, then

    Text Solution

    |

  16. If y is a function of x then (d^2y)/(dx^2)+y \ dy/dx=0. If x is a func...

    Text Solution

    |

  17. Leg g(x)=ln(f(x)), whre f(x) is a twice differentiable positive functi...

    Text Solution

    |

  18. If the functions f(x)=x^(3)+e^(x//2) " and " g(x)=f^(-1)(x), the value...

    Text Solution

    |

  19. Let f(theta)=sin(tan^(-1)((sintheta)/(sqrt(cos2theta)))), where -pi/4...

    Text Solution

    |

  20. If y=log(sinx)(tanx), then (dy)/ (dx) at x=(1)/(4) is equal to

    Text Solution

    |