Home
Class 12
MATHS
Iff(x)=|x|^(|sinx|),thenf'((pi)/(4)) equ...

If`f(x)=|x|^(|sinx|)`,then`f'((pi)/(4))` equals

A

`((pi)/(4))^(1sqrt2).((sqrt2)/(2)log"(4)/(pi)-(2sqrt2)/(pi))`

B

`((pi)/(4))^(1sqrt2).((sqrt2)/(2)log"(4)/(pi)+(2sqrt2)/(pi))`

C

`((pi)/(4))^(1sqrt2).((sqrt2)/(2)log"(4)/(pi)-(2sqrt2)/(pi))`

D

`((pi)/(4))^(1sqrt2).((sqrt2)/(2)log"(4)/(pi)+(2sqrt2)/(pi))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( f'(x) \) of the function \( f(x) = |x|^{|\sin x|} \) at \( x = \frac{\pi}{4} \), we can follow these steps: ### Step 1: Simplify the function in the neighborhood of \( x = \frac{\pi}{4} \) Since \( \frac{\pi}{4} \) is positive, we have: \[ f(x) = x^{\sin x} \] ### Step 2: Take the natural logarithm of both sides Let \( y = f(x) \). Then, \[ \log y = \log(x^{\sin x}) = \sin x \cdot \log x \] ### Step 3: Differentiate both sides with respect to \( x \) Using implicit differentiation: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}(\sin x \cdot \log x) \] Using the product rule on the right-hand side: \[ \frac{d}{dx}(\sin x \cdot \log x) = \cos x \cdot \log x + \sin x \cdot \frac{1}{x} \] Thus, we have: \[ \frac{1}{y} \frac{dy}{dx} = \cos x \cdot \log x + \frac{\sin x}{x} \] ### Step 4: Solve for \( \frac{dy}{dx} \) Multiplying both sides by \( y \): \[ \frac{dy}{dx} = y \left( \cos x \cdot \log x + \frac{\sin x}{x} \right) \] ### Step 5: Substitute back \( y = x^{\sin x} \) Thus, \[ \frac{dy}{dx} = x^{\sin x} \left( \cos x \cdot \log x + \frac{\sin x}{x} \right) \] ### Step 6: Evaluate at \( x = \frac{\pi}{4} \) Now, we need to evaluate \( f'(\frac{\pi}{4}) \): 1. Calculate \( \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} \) 2. Calculate \( \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} \) 3. Calculate \( \log \frac{\pi}{4} \) Substituting these values into the derivative: \[ f'\left(\frac{\pi}{4}\right) = \left(\frac{\pi}{4}\right)^{\frac{1}{\sqrt{2}}} \left( \frac{1}{\sqrt{2}} \cdot \log \frac{\pi}{4} + \frac{1/\sqrt{2}}{\frac{\pi}{4}} \right) \] ### Step 7: Simplify the expression This simplifies to: \[ f'\left(\frac{\pi}{4}\right) = \left(\frac{\pi}{4}\right)^{\frac{1}{\sqrt{2}}} \left( \frac{1}{\sqrt{2}} \log \frac{\pi}{4} + \frac{4}{\sqrt{2} \pi} \right) \] ### Final Result Thus, the value of \( f'(\frac{\pi}{4}) \) is: \[ f'\left(\frac{\pi}{4}\right) = \left(\frac{\pi}{4}\right)^{\frac{1}{\sqrt{2}}} \left( \frac{1}{\sqrt{2}} \log \frac{\pi}{4} + \frac{4}{\sqrt{2} \pi} \right) \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise SOLVED EXAMPLES|7 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(2-3cosx)/(sinx) , then f'((pi)/(4)) is equal to

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If f(x)=|cosx-sinx| , then f'(pi/2) is equal to

If f(x) = |x|^ |tanx| then f'( -pi/6) is equal to

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)

If f(x)= |cosxl, then f'((3pi)/4) equal to -

If f(x) = |cosx| , then f'(pi/4) is equal to "……."

If f(x) = |cosx| , then f'(pi/4) is equal to "……."

ARIHANT MATHS ENGLISH-DIFFERENTIATION -Exercise (More Than One Correct Option Type Questions)
  1. Let f(x)=x+3ln(x-2)&g(x)=x+5ln(x-1), then the set of x satisfying the ...

    Text Solution

    |

  2. If cos^(-1) ((x^(2) -y^(2))/( x^(2)+y^(2)))=a ,then (dy)/(dx) =

    Text Solution

    |

  3. Iff(x)=|x|^(|sinx|),thenf'((pi)/(4)) equals

    Text Solution

    |

  4. y=x/(a+x/(b+x/(a+x/(b+...oo)))), (dy)/(dx)=b/(a(b+2y))

    Text Solution

    |

  5. If y=x^(x^(2)), then (dy)/(dx) equals

    Text Solution

    |

  6. "If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

    Text Solution

    |

  7. If x^2e^y+2xye^x+13=0 then (dy)/(dx)=

    Text Solution

    |

  8. If x=e^(y+e^(y+e^(y+...oo))),xgt0, then (dy)/(dx) is equal to

    Text Solution

    |

  9. Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If g(...

    Text Solution

    |

  10. If f and g are the function whose graphs are as shown, let u(x)=f(g(x)...

    Text Solution

    |

  11. f'(x) = g(x) and g'(x) =-f(x) for all real x and f(5)=2=f'(5) then f^2...

    Text Solution

    |

  12. If y=(f(0)f(0)f)(x)andf(0)=0,f'(0)=2 then y'(0) is equal to

    Text Solution

    |

  13. If y^2=P(x) is a polynomial of degree 3, then 2(d/(dx))(y^2dot(d^2y)/(...

    Text Solution

    |

  14. If y=f(x)andx=g(y) are inverse functions of each other, then

    Text Solution

    |

  15. If y is a function of x then (d^2y)/(dx^2)+y \ dy/dx=0. If x is a func...

    Text Solution

    |

  16. Leg g(x)=ln(f(x)), whre f(x) is a twice differentiable positive functi...

    Text Solution

    |

  17. If the functions f(x)=x^(3)+e^(x//2) " and " g(x)=f^(-1)(x), the value...

    Text Solution

    |

  18. Let f(theta)=sin(tan^(-1)((sintheta)/(sqrt(cos2theta)))), where -pi/4...

    Text Solution

    |

  19. If y=log(sinx)(tanx), then (dy)/ (dx) at x=(1)/(4) is equal to

    Text Solution

    |

  20. If y=sum(r=1)^(x) tan^(-1)((1)/(1+r+r^(2))), then (dy)/(dx) is equal t...

    Text Solution

    |