Home
Class 12
MATHS
If x^2e^y+2xye^x+13=0 then (dy)/(dx)=...

If `x^2e^y+2xye^x+13=0` then `(dy)/(dx)=`

A

`(-2xe^(y-x)+2y(x-1))/(x(xe^(y-x)+2))`

B

`[(2xe^(y-x)+2y(x-1))/(x(xe^(y-x)+2))]`

C

`(2xe^(y-x)+2y(x-1))/(x(xe^(y-x)+2))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \(x^2 e^y + 2xy e^x + 13 = 0\), we will use implicit differentiation. Here are the steps: ### Step 1: Differentiate both sides with respect to \(x\) Differentiate the equation \(x^2 e^y + 2xy e^x + 13 = 0\): \[ \frac{d}{dx}(x^2 e^y) + \frac{d}{dx}(2xy e^x) + \frac{d}{dx}(13) = 0 \] ### Step 2: Apply the product rule and chain rule For the first term \(x^2 e^y\), we apply the product rule: \[ \frac{d}{dx}(x^2 e^y) = e^y \frac{d}{dx}(x^2) + x^2 \frac{d}{dx}(e^y) = e^y (2x) + x^2 e^y \frac{dy}{dx} \] For the second term \(2xy e^x\), we again apply the product rule: \[ \frac{d}{dx}(2xy e^x) = 2y e^x \frac{d}{dx}(x) + 2x e^x \frac{d}{dx}(y) + 2xy \frac{d}{dx}(e^x) = 2y e^x + 2x e^x \frac{dy}{dx} + 2xy e^x \] The derivative of a constant (13) is 0. ### Step 3: Combine the derivatives Now we combine the derivatives we computed: \[ e^y (2x) + x^2 e^y \frac{dy}{dx} + 2y e^x + 2xy e^x + 2x e^x \frac{dy}{dx} = 0 \] ### Step 4: Collect terms involving \(\frac{dy}{dx}\) Rearranging gives: \[ x^2 e^y \frac{dy}{dx} + 2x e^x \frac{dy}{dx} = - (2x e^y + 2y e^x + 2xy e^x) \] Factoring out \(\frac{dy}{dx}\): \[ \frac{dy}{dx} (x^2 e^y + 2x e^x) = - (2x e^y + 2y e^x + 2xy e^x) \] ### Step 5: Solve for \(\frac{dy}{dx}\) Now, we can isolate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{- (2x e^y + 2y e^x + 2xy e^x)}{x^2 e^y + 2x e^x} \] ### Step 6: Simplify the expression if possible We can factor out common terms in the numerator: \[ \frac{dy}{dx} = \frac{-2 (x e^y + y e^x + xy e^x)}{x^2 e^y + 2x e^x} \] ### Final Answer Thus, the final expression for \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{-2 (x e^y + y e^x + xy e^x)}{x^2 e^y + 2x e^x} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise SOLVED EXAMPLES|7 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)=-(e^x(e^y-1))/(e^y(e^x-1)) or, (dy)/(dx)+e^(y-x)=0

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)+e^(y-x)=0

If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)

If ln((e-1)e^(xy) +x^2)=x^2+y^2 then ((dy)/(dx))_(1,0) is equal to

If ln((e-1)e^(xy) +x^2)=x^2+y^2 then ((dy)/(dx))_(1,0) is equal to

Statement 1: If e^(xy)+ln(xy)+cos(xy)+5=0, then (dy)/(dx)=-y/x . Statement 2: d/(dx)(xy)=0,y is a function of x implies(dy)/(dx)=-y/x .

If y=(e^x-e^(-x))/(e^x+e^(-x)) , prove that (dy)/(dx)=1-y^2

If y=(e^x-e^(-x))/(e^x+e^(-x)) , prove that (dy)/(dx)=1-y^2

Solve the following differential equation: (d^2y)/dx^2=e^x+cosx , given that (dy)/(dx)=1=y , when x=0

y^2+x^2(dy)/(dx)=x y(dy)/(dx)

ARIHANT MATHS ENGLISH-DIFFERENTIATION -Exercise (More Than One Correct Option Type Questions)
  1. If y=x^(x^(2)), then (dy)/(dx) equals

    Text Solution

    |

  2. "If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

    Text Solution

    |

  3. If x^2e^y+2xye^x+13=0 then (dy)/(dx)=

    Text Solution

    |

  4. If x=e^(y+e^(y+e^(y+...oo))),xgt0, then (dy)/(dx) is equal to

    Text Solution

    |

  5. Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If g(...

    Text Solution

    |

  6. If f and g are the function whose graphs are as shown, let u(x)=f(g(x)...

    Text Solution

    |

  7. f'(x) = g(x) and g'(x) =-f(x) for all real x and f(5)=2=f'(5) then f^2...

    Text Solution

    |

  8. If y=(f(0)f(0)f)(x)andf(0)=0,f'(0)=2 then y'(0) is equal to

    Text Solution

    |

  9. If y^2=P(x) is a polynomial of degree 3, then 2(d/(dx))(y^2dot(d^2y)/(...

    Text Solution

    |

  10. If y=f(x)andx=g(y) are inverse functions of each other, then

    Text Solution

    |

  11. If y is a function of x then (d^2y)/(dx^2)+y \ dy/dx=0. If x is a func...

    Text Solution

    |

  12. Leg g(x)=ln(f(x)), whre f(x) is a twice differentiable positive functi...

    Text Solution

    |

  13. If the functions f(x)=x^(3)+e^(x//2) " and " g(x)=f^(-1)(x), the value...

    Text Solution

    |

  14. Let f(theta)=sin(tan^(-1)((sintheta)/(sqrt(cos2theta)))), where -pi/4...

    Text Solution

    |

  15. If y=log(sinx)(tanx), then (dy)/ (dx) at x=(1)/(4) is equal to

    Text Solution

    |

  16. If y=sum(r=1)^(x) tan^(-1)((1)/(1+r+r^(2))), then (dy)/(dx) is equal t...

    Text Solution

    |

  17. If y=(sin^(-1)(sinalphasinx)/(1-cosalphasinx)), then y'(0) is equal to

    Text Solution

    |

  18. If f(x)=cot^(-1)((x^(x)-x^(-x))/(2)) then f'(1) equals

    Text Solution

    |

  19. The function f(x)=e^x+x , being differentiable and one-to-one, has a d...

    Text Solution

    |

  20. If f''(x)=-f(x) and g(x)=f^(prime)(x) and F(x)=(f(x/2))^2+(g(x/2))^2 a...

    Text Solution

    |