Home
Class 12
MATHS
If y is a function of x then (d^2y)/(dx^...

If `y` is a function of `x` then `(d^2y)/(dx^2)+y \ dy/dx=0.` If `x` is a function of `y` then the equation becomes

A

`(d^(2)x)/(dy^(2))-x(dx)/(dy)=0`

B

`(d^(2)x)/(dy^(2))+y((dx)/(dy))^(2)=0`

C

`(d^(2)x)/(dy^(2))-y((dx)/(dy))^(2)=0`

D

`(d^(2)x)/(dy^(2))-x((dx)/(dy))^(2)=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we start with the differential equation: \[ \frac{d^2y}{dx^2} + y \frac{dy}{dx} = 0 \] We need to express this equation in terms of \( x \) as a function of \( y \). ### Step 1: Rewrite \(\frac{dy}{dx}\) We know that: \[ \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} \] ### Step 2: Rewrite \(\frac{d^2y}{dx^2}\) Using the chain rule, we can express \(\frac{d^2y}{dx^2}\) in terms of \(\frac{dx}{dy}\): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(\frac{1}{\frac{dx}{dy}}\right) \] Using the quotient rule, we have: \[ \frac{d^2y}{dx^2} = -\frac{1}{\left(\frac{dx}{dy}\right)^2} \cdot \frac{d^2x}{dy^2} \] ### Step 3: Substitute into the original equation Now we substitute this expression back into the original equation: \[ -\frac{1}{\left(\frac{dx}{dy}\right)^2} \cdot \frac{d^2x}{dy^2} + y \cdot \frac{1}{\frac{dx}{dy}} = 0 \] ### Step 4: Multiply through by \(\left(\frac{dx}{dy}\right)^2\) To eliminate the fraction, we multiply through by \(\left(\frac{dx}{dy}\right)^2\): \[ -\frac{d^2x}{dy^2} + y \cdot \frac{dx}{dy} = 0 \] ### Step 5: Rearranging the equation Rearranging gives us: \[ \frac{d^2x}{dy^2} - y \cdot \frac{dx}{dy} = 0 \] This is the required form of the differential equation when \( x \) is a function of \( y \). ### Final Result Thus, the equation becomes: \[ \frac{d^2x}{dy^2} - y \cdot \frac{dx}{dy} = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise SOLVED EXAMPLES|7 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If y= cot x, prove that (d^(2)y)/(dx^(2)) + 2y (dy)/(dx)= 0.

If y=sin(logx) , prove that x^2(d^2y)/(dx^2)+x(dy)/(dx)+y=0 .

If y=e^x(sin x+cosx) prove that (d^2y)/(dx^2)-2 (dy)/(dx)+2y=0 .

(dy)/(dx)+(x-2y)/(2x-y)=0

y^2+x^2(dy)/(dx)=x y(dy)/(dx)

If y="sin"(logx), then prove that (x^2d^2y)/(dx^2)+x(dy)/(dx)+y=0

If y=x^x , prove that (d^2y)/(dx^2)-1/y((dy)/(dx))^2-y/x=0

If y=x^x , prove that (d^2y)/(dx^2)-1/y((dy)/(dx))^2-y/x=0

If y=x^x prove that (d^2y)/(dx^2)-1/(y)(dy/dx)^2-y/x=0

If y=a e^(2x)+b e^(-x) , show that, (d^2y)/(dx^2)-(dy)/(dx)-2y=0 .

ARIHANT MATHS ENGLISH-DIFFERENTIATION -Exercise (More Than One Correct Option Type Questions)
  1. If y^2=P(x) is a polynomial of degree 3, then 2(d/(dx))(y^2dot(d^2y)/(...

    Text Solution

    |

  2. If y=f(x)andx=g(y) are inverse functions of each other, then

    Text Solution

    |

  3. If y is a function of x then (d^2y)/(dx^2)+y \ dy/dx=0. If x is a func...

    Text Solution

    |

  4. Leg g(x)=ln(f(x)), whre f(x) is a twice differentiable positive functi...

    Text Solution

    |

  5. If the functions f(x)=x^(3)+e^(x//2) " and " g(x)=f^(-1)(x), the value...

    Text Solution

    |

  6. Let f(theta)=sin(tan^(-1)((sintheta)/(sqrt(cos2theta)))), where -pi/4...

    Text Solution

    |

  7. If y=log(sinx)(tanx), then (dy)/ (dx) at x=(1)/(4) is equal to

    Text Solution

    |

  8. If y=sum(r=1)^(x) tan^(-1)((1)/(1+r+r^(2))), then (dy)/(dx) is equal t...

    Text Solution

    |

  9. If y=(sin^(-1)(sinalphasinx)/(1-cosalphasinx)), then y'(0) is equal to

    Text Solution

    |

  10. If f(x)=cot^(-1)((x^(x)-x^(-x))/(2)) then f'(1) equals

    Text Solution

    |

  11. The function f(x)=e^x+x , being differentiable and one-to-one, has a d...

    Text Solution

    |

  12. If f''(x)=-f(x) and g(x)=f^(prime)(x) and F(x)=(f(x/2))^2+(g(x/2))^2 a...

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. If x=f(t)cost-f^(prime)(t)sint and y=f(t)sint+f^(prime)(t)cost , then ...

    Text Solution

    |

  15. If y=at^2+2bt-cand t = ax^2+2bx+c, then(d^3y)/(dx^3) equals

    Text Solution

    |

  16. Differential coefficient of (x^((l+m)/(m-n)))^(1//(n-l))*(x^((m+n)/(n-...

    Text Solution

    |

  17. if y=(A+Bx)e^(mx)+(m-1)^-1 e^x then (d^2y)/(dx^2)-2m(dy)/(dx)+m^2y is ...

    Text Solution

    |

  18. If f(x)=cos^(-1)1/(sqrt(13))(2cosx-3sinx) +sin^(-1)1/(sqrt(13))x(2cos...

    Text Solution

    |

  19. If f(x)=sqrt(x+2sqrt(2x-4))+sqrt(x-2sqrt(2x-4)) then the value of 10 f...

    Text Solution

    |

  20. Let y=1n(1+cosx)^2 . Then the value of (d^2y)/(dx^2)+2/(e^(y/2)) equal...

    Text Solution

    |