Home
Class 12
MATHS
If y=log(sinx)(tanx), then (dy)/ (dx) at...

If `y=log_(sinx)(tanx),` then `(dy)/ (dx)` at `x=(1)/(4)` is equal to

A

`(4)/(log2)`

B

`-4log2`

C

`(-4)/(log2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \(\frac{dy}{dx}\) for the function \(y = \log_{\sin x}(\tan x)\) at \(x = \frac{\pi}{4}\), we can follow these steps: ### Step 1: Rewrite the logarithm Using the change of base formula for logarithms, we can rewrite the function: \[ y = \frac{\log(\tan x)}{\log(\sin x)} \] ### Step 2: Differentiate using the quotient rule To differentiate \(y\) with respect to \(x\), we apply the quotient rule: \[ \frac{dy}{dx} = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2} \] where \(f(x) = \log(\tan x)\) and \(g(x) = \log(\sin x)\). ### Step 3: Find \(f'(x)\) and \(g'(x)\) We need to find the derivatives \(f'(x)\) and \(g'(x)\): - For \(f(x) = \log(\tan x)\): \[ f'(x) = \frac{1}{\tan x} \cdot \sec^2 x = \frac{\sec^2 x}{\tan x} \] - For \(g(x) = \log(\sin x)\): \[ g'(x) = \frac{1}{\sin x} \cdot \cos x = \frac{\cos x}{\sin x} = \cot x \] ### Step 4: Substitute \(f(x)\), \(g(x)\), \(f'(x)\), and \(g'(x)\) into the quotient rule Now substituting into the quotient rule: \[ \frac{dy}{dx} = \frac{\log(\sin x) \cdot \frac{\sec^2 x}{\tan x} - \log(\tan x) \cdot \cot x}{(\log(\sin x))^2} \] ### Step 5: Evaluate at \(x = \frac{\pi}{4}\) Now we substitute \(x = \frac{\pi}{4}\): - \(\tan\left(\frac{\pi}{4}\right) = 1\) - \(\sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}\) - \(\sec^2\left(\frac{\pi}{4}\right) = 2\) - \(\cot\left(\frac{\pi}{4}\right) = 1\) Substituting these values: \[ \frac{dy}{dx} = \frac{\log\left(\frac{1}{\sqrt{2}}\right) \cdot \frac{2}{1} - \log(1) \cdot 1}{\left(\log\left(\frac{1}{\sqrt{2}}\right)\right)^2} \] Since \(\log(1) = 0\), the equation simplifies to: \[ \frac{dy}{dx} = \frac{2 \log\left(\frac{1}{\sqrt{2}}\right)}{\left(\log\left(\frac{1}{\sqrt{2}}\right)\right)^2} \] ### Step 6: Simplify the expression We know that \(\log\left(\frac{1}{\sqrt{2}}\right) = -\frac{1}{2} \log(2)\): \[ \frac{dy}{dx} = \frac{2 \left(-\frac{1}{2} \log(2)\right)}{\left(-\frac{1}{2} \log(2)\right)^2} \] This simplifies to: \[ \frac{dy}{dx} = \frac{-\log(2)}{\frac{1}{4} (\log(2))^2} = -4 \frac{\log(2)}{(\log(2))^2} = -\frac{4}{\log(2)} \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) at \(x = \frac{\pi}{4}\) is: \[ \frac{dy}{dx} = -\frac{4}{\log(2)} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise SOLVED EXAMPLES|7 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If y=log_(e)x+sinx+e^(x)" then "(dy)/(dx) is

if y=log_(sinx) tanx then ((dy)/(dx)) _(pi/4) is

if y=log_(sinx) tanx then ((dy)/(dx)) _(pi/4) is

If y=log_(cosx)sinx, then (dy)/(dx) is equal to

If y=(log)_(sinx)(tanx),t h e n(((dy)/(dx)))_(pi/4)"is equal to" (a) 4/(log2) (b) -4log2 (c) (-4)/(log2) (d) none of these

If y=x^(cosx)+(sinx)^(tanx) , find (dy)/(dx)

If y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to

if y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to

If y = 36^(log_(6)x) , then (dy)/(dx) is

If y=(log_(cosx)sinx)(log_(sinx)cosx)+"sin"""^(-1)(2x)/(1+x^(2)) , then (dy)/(dx) at x=(pi)/(2) is equal to

ARIHANT MATHS ENGLISH-DIFFERENTIATION -Exercise (More Than One Correct Option Type Questions)
  1. If the functions f(x)=x^(3)+e^(x//2) " and " g(x)=f^(-1)(x), the value...

    Text Solution

    |

  2. Let f(theta)=sin(tan^(-1)((sintheta)/(sqrt(cos2theta)))), where -pi/4...

    Text Solution

    |

  3. If y=log(sinx)(tanx), then (dy)/ (dx) at x=(1)/(4) is equal to

    Text Solution

    |

  4. If y=sum(r=1)^(x) tan^(-1)((1)/(1+r+r^(2))), then (dy)/(dx) is equal t...

    Text Solution

    |

  5. If y=(sin^(-1)(sinalphasinx)/(1-cosalphasinx)), then y'(0) is equal to

    Text Solution

    |

  6. If f(x)=cot^(-1)((x^(x)-x^(-x))/(2)) then f'(1) equals

    Text Solution

    |

  7. The function f(x)=e^x+x , being differentiable and one-to-one, has a d...

    Text Solution

    |

  8. If f''(x)=-f(x) and g(x)=f^(prime)(x) and F(x)=(f(x/2))^2+(g(x/2))^2 a...

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. If x=f(t)cost-f^(prime)(t)sint and y=f(t)sint+f^(prime)(t)cost , then ...

    Text Solution

    |

  11. If y=at^2+2bt-cand t = ax^2+2bx+c, then(d^3y)/(dx^3) equals

    Text Solution

    |

  12. Differential coefficient of (x^((l+m)/(m-n)))^(1//(n-l))*(x^((m+n)/(n-...

    Text Solution

    |

  13. if y=(A+Bx)e^(mx)+(m-1)^-1 e^x then (d^2y)/(dx^2)-2m(dy)/(dx)+m^2y is ...

    Text Solution

    |

  14. If f(x)=cos^(-1)1/(sqrt(13))(2cosx-3sinx) +sin^(-1)1/(sqrt(13))x(2cos...

    Text Solution

    |

  15. If f(x)=sqrt(x+2sqrt(2x-4))+sqrt(x-2sqrt(2x-4)) then the value of 10 f...

    Text Solution

    |

  16. Let y=1n(1+cosx)^2 . Then the value of (d^2y)/(dx^2)+2/(e^(y/2)) equal...

    Text Solution

    |

  17. If f(x)=(a+sqrt(a^2-x^2)+x)/(sqrt(a^2-x^2)+a-x) where a>0 then f'(0) ...

    Text Solution

    |

  18. Let u/x a n dv(x) be differentiable functions such that (u(x))/(v(x))=...

    Text Solution

    |

  19. If f(x) =|log(e)|x||, then f'(x) equals

    Text Solution

    |

  20. If f(x) is given by f(x)=(cosx+i sinx)(cos3x+isin3x)......... .......

    Text Solution

    |