Home
Class 12
MATHS
Differential coefficient of (x^((l+m)/(m...

Differential coefficient of `(x^((l+m)/(m-n)))^(1//(n-l))*(x^((m+n)/(n-l)))^(1//(l-m))*(x^((n+l)/(l-m)))^(1//(m-n))` wrt `x` is

A

1

B

0

C

-1

D

`x^(lmn)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the differential coefficient of the expression \[ \left(x^{\frac{l+m}{m-n}}\right)^{\frac{1}{n-l}} \cdot \left(x^{\frac{m+n}{n-l}}\right)^{\frac{1}{l-m}} \cdot \left(x^{\frac{n+l}{l-m}}\right)^{\frac{1}{m-n}} \] with respect to \(x\), we can follow these steps: ### Step 1: Simplify the Expression We start by simplifying the expression. The expression can be rewritten as: \[ x^{\frac{l+m}{m-n} \cdot \frac{1}{n-l}} \cdot x^{\frac{m+n}{n-l} \cdot \frac{1}{l-m}} \cdot x^{\frac{n+l}{l-m} \cdot \frac{1}{m-n}} \] Combining the powers of \(x\): \[ x^{\left(\frac{l+m}{(m-n)(n-l)} + \frac{m+n}{(n-l)(l-m)} + \frac{n+l}{(l-m)(m-n)}\right)} \] ### Step 2: Find a Common Denominator The common denominator for the three fractions is \((m-n)(n-l)(l-m)\). Therefore, we rewrite each term with this common denominator: 1. The first term becomes: \[ \frac{(l+m)(l-m)}{(m-n)(n-l)(l-m)} \] 2. The second term becomes: \[ \frac{(m+n)(m-n)}{(n-l)(l-m)(m-n)} \] 3. The third term becomes: \[ \frac{(n+l)(n-l)}{(l-m)(m-n)(n-l)} \] ### Step 3: Combine the Numerators Now we combine the numerators: \[ (l+m)(l-m) + (m+n)(m-n) + (n+l)(n-l) \] ### Step 4: Expand and Simplify the Numerator Expanding each term: 1. \((l+m)(l-m) = l^2 - m^2\) 2. \((m+n)(m-n) = m^2 - n^2\) 3. \((n+l)(n-l) = n^2 - l^2\) Combining these gives: \[ (l^2 - m^2) + (m^2 - n^2) + (n^2 - l^2) = 0 \] ### Step 5: Final Expression Since the numerator simplifies to 0, we have: \[ x^{\frac{0}{(m-n)(n-l)(l-m)}} = x^0 = 1 \] ### Step 6: Differentiate The differential coefficient of a constant (1) with respect to \(x\) is: \[ \frac{d}{dx}(1) = 0 \] ### Conclusion Thus, the differential coefficient of the given expression with respect to \(x\) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise SOLVED EXAMPLES|7 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Simplify : ((a^(m))/(a^(n)))^(m+n)((a^(n))/(a^(l)))^(n+l)((a^(l))/(a^(m)))^(l+m)

Show that : ((a^(m))/(a^(-n)))^(m-n)xx((a^(n))/(a^(-1)))^(n-1)xx((a^(l))/(a^(-m)))^(l-m)=1

If f(x)=((x^l)/(x^m))^(l+m)((x^m)/(x^n))^(m+n)((x^n)/(x^l))^(n+l) , then f'(x)

(x^(m+n)xxx^(n+l)xxx^(l+m))/(x^mxxx^nxxx^l)

The coefficient of x^m in (1+x)^m +(1+m)^(m+1) +...+(1+x)^n ,m≤n is

If f(x) = (x^l/x^m)^(l+m) (x^m/x^n)^(m+n) (x^n/x^l)^(n+l) , then find f'(x).

If f(x)=((x^l)/(x^m))^(l+m)((x^m)/(x^n))^(m+n)((x^n)/(x^l))^(n+l) , then f^(prime)(x) is equal to (a) 1 (b) 0 (c) x^(l+m+n) (d) none of these

If L=lim_(nto oo) (n^(3)(e^(1//n)+e^(2//n)+………+e))/((n+1)^(m)(1^(m)+4^(m)+….+n^(2m))) is non zero finite real, then

Derive reduction formula for l_((n","m))=int (sin^(n)x)/(cos^(m)x)dx .

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

ARIHANT MATHS ENGLISH-DIFFERENTIATION -Exercise (More Than One Correct Option Type Questions)
  1. If x=f(t)cost-f^(prime)(t)sint and y=f(t)sint+f^(prime)(t)cost , then ...

    Text Solution

    |

  2. If y=at^2+2bt-cand t = ax^2+2bx+c, then(d^3y)/(dx^3) equals

    Text Solution

    |

  3. Differential coefficient of (x^((l+m)/(m-n)))^(1//(n-l))*(x^((m+n)/(n-...

    Text Solution

    |

  4. if y=(A+Bx)e^(mx)+(m-1)^-1 e^x then (d^2y)/(dx^2)-2m(dy)/(dx)+m^2y is ...

    Text Solution

    |

  5. If f(x)=cos^(-1)1/(sqrt(13))(2cosx-3sinx) +sin^(-1)1/(sqrt(13))x(2cos...

    Text Solution

    |

  6. If f(x)=sqrt(x+2sqrt(2x-4))+sqrt(x-2sqrt(2x-4)) then the value of 10 f...

    Text Solution

    |

  7. Let y=1n(1+cosx)^2 . Then the value of (d^2y)/(dx^2)+2/(e^(y/2)) equal...

    Text Solution

    |

  8. If f(x)=(a+sqrt(a^2-x^2)+x)/(sqrt(a^2-x^2)+a-x) where a>0 then f'(0) ...

    Text Solution

    |

  9. Let u/x a n dv(x) be differentiable functions such that (u(x))/(v(x))=...

    Text Solution

    |

  10. If f(x) =|log(e)|x||, then f'(x) equals

    Text Solution

    |

  11. If f(x) is given by f(x)=(cosx+i sinx)(cos3x+isin3x)......... .......

    Text Solution

    |

  12. Let f(x)=x^(n) , n being a non-negative integer, The value of n for w...

    Text Solution

    |

  13. If f(x)=sin{(pi)/(3)[x]-x^(2)}" for "2ltxlt3 and [x] denotes the grea...

    Text Solution

    |

  14. The function u=e^x sin x ; v=e^x cos x satisfy the equation a.v(d u...

    Text Solution

    |

  15. If f(x)=log(x^(2))(logx),then f '(x)at x= e is

    Text Solution

    |

  16. Let f be a differentiable function satisfying [f(x)]^(n)=f(nx)" for ...

    Text Solution

    |

  17. If y=f(x) is an odd differentiable function defined on (-oo,oo) such t...

    Text Solution

    |

  18. "If "y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo))))," then prove that "(dy)/(...

    Text Solution

    |

  19. If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

    Text Solution

    |

  20. Let f(x)=x^2+xg^2(1)+g^''(2) and g(x)=f(1).x^2+xf'(x)+f''(x), then fin...

    Text Solution

    |