Home
Class 12
MATHS
if y=(A+Bx)e^(mx)+(m-1)^-1 e^x then (d^2...

if `y=(A+Bx)e^(mx)+(m-1)^-1 e^x` then `(d^2y)/(dx^2)-2m(dy)/(dx)+m^2y` is equal to:

A

`e^(x)`

B

`e^(mx)`

C

`e^(-mx)`

D

`e^((1-m)x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \((d^2y)/(dx^2) - 2m(dy)/(dx) + m^2y\) given \(y = (A + Bx)e^{mx} + (m - 1)^{-1} e^x\). ### Step 1: Find the first derivative \(dy/dx\) Using the product rule for differentiation, we have: \[ y = (A + Bx)e^{mx} + (m - 1)^{-1} e^x \] Let \(u = A + Bx\) and \(v = e^{mx}\). Using the product rule: \[ \frac{dy}{dx} = \frac{du}{dx} v + u \frac{dv}{dx} \] Calculating \(\frac{du}{dx}\) and \(\frac{dv}{dx}\): \[ \frac{du}{dx} = B \] \[ \frac{dv}{dx} = me^{mx} \] Thus, \[ \frac{dy}{dx} = B e^{mx} + (A + Bx) me^{mx} + (m - 1)^{-1} e^x \] Combining terms: \[ \frac{dy}{dx} = (B + m(A + Bx)) e^{mx} + (m - 1)^{-1} e^x \] ### Step 2: Find the second derivative \(d^2y/dx^2\) Now we differentiate \(\frac{dy}{dx}\): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left((B + m(A + Bx)) e^{mx} + (m - 1)^{-1} e^x\right) \] Using the product rule again: 1. Differentiate \((B + m(A + Bx)) e^{mx}\): - Let \(u = B + m(A + Bx)\) and \(v = e^{mx}\). - Then, \(\frac{du}{dx} = mB\) and \(\frac{dv}{dx} = me^{mx}\). Thus, \[ \frac{d}{dx}\left((B + m(A + Bx)) e^{mx}\right) = (mB + m(B + m(A + Bx))) e^{mx} \] 2. Differentiate \((m - 1)^{-1} e^x\): \[ \frac{d}{dx}\left((m - 1)^{-1} e^x\right) = (m - 1)^{-1} e^x \] Combining these results, we have: \[ \frac{d^2y}{dx^2} = (mB + m(B + m(A + Bx))) e^{mx} + (m - 1)^{-1} e^x \] ### Step 3: Substitute into the expression Now we substitute \(\frac{d^2y}{dx^2}\), \(\frac{dy}{dx}\), and \(y\) into the expression: \[ \frac{d^2y}{dx^2} - 2m\frac{dy}{dx} + m^2y \] Substituting the values: 1. Substitute \(\frac{d^2y}{dx^2}\): \[ (mB + m(B + m(A + Bx))) e^{mx} + (m - 1)^{-1} e^x \] 2. Substitute \(-2m\frac{dy}{dx}\): \[ -2m\left((B + m(A + Bx)) e^{mx} + (m - 1)^{-1} e^x\right) \] 3. Substitute \(m^2y\): \[ m^2\left((A + Bx)e^{mx} + (m - 1)^{-1} e^x\right) \] ### Step 4: Combine and simplify After substituting all parts, we combine like terms. The terms involving \(e^{mx}\) will simplify, and the terms involving \(e^x\) will also simplify. After simplification, we find that: \[ \frac{d^2y}{dx^2} - 2m\frac{dy}{dx} + m^2y = e^x \] ### Final Answer Thus, the final result is: \[ \frac{d^2y}{dx^2} - 2m\frac{dy}{dx} + m^2y = e^x \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise SOLVED EXAMPLES|7 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If y=a e^(2x)+b e^(-x) , show that, (d^2y)/(dx^2)-(dy)/(dx)-2y=0 .

If y=A e^(m x)+B e^(n x) , show that (d^2y)/(dx^2)-(m+n)(dy)/(dx)+m n y=0

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2 .

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2 .

If e^y(x+1)=1 . Show that (d^2y)/(dx^2)=((dy)/(dx))^2

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2

If y=A e^(m x)+B e^(n x) , show that (d^2y)/(dx^2)-(m+n)(dy)/(dx)+m n y=0 .

If y=e^(msin^(-1)x) prove that (1-x^2)((d^2y)/dx^2)-x(dy)/dx=m^2y

If y = (e^(x)+1)/(e^(x)-1), " then" (y^(2))/2 + (dy)/(dx) is equal to

If y=sin(log_(e)x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

ARIHANT MATHS ENGLISH-DIFFERENTIATION -Exercise (More Than One Correct Option Type Questions)
  1. If y=at^2+2bt-cand t = ax^2+2bx+c, then(d^3y)/(dx^3) equals

    Text Solution

    |

  2. Differential coefficient of (x^((l+m)/(m-n)))^(1//(n-l))*(x^((m+n)/(n-...

    Text Solution

    |

  3. if y=(A+Bx)e^(mx)+(m-1)^-1 e^x then (d^2y)/(dx^2)-2m(dy)/(dx)+m^2y is ...

    Text Solution

    |

  4. If f(x)=cos^(-1)1/(sqrt(13))(2cosx-3sinx) +sin^(-1)1/(sqrt(13))x(2cos...

    Text Solution

    |

  5. If f(x)=sqrt(x+2sqrt(2x-4))+sqrt(x-2sqrt(2x-4)) then the value of 10 f...

    Text Solution

    |

  6. Let y=1n(1+cosx)^2 . Then the value of (d^2y)/(dx^2)+2/(e^(y/2)) equal...

    Text Solution

    |

  7. If f(x)=(a+sqrt(a^2-x^2)+x)/(sqrt(a^2-x^2)+a-x) where a>0 then f'(0) ...

    Text Solution

    |

  8. Let u/x a n dv(x) be differentiable functions such that (u(x))/(v(x))=...

    Text Solution

    |

  9. If f(x) =|log(e)|x||, then f'(x) equals

    Text Solution

    |

  10. If f(x) is given by f(x)=(cosx+i sinx)(cos3x+isin3x)......... .......

    Text Solution

    |

  11. Let f(x)=x^(n) , n being a non-negative integer, The value of n for w...

    Text Solution

    |

  12. If f(x)=sin{(pi)/(3)[x]-x^(2)}" for "2ltxlt3 and [x] denotes the grea...

    Text Solution

    |

  13. The function u=e^x sin x ; v=e^x cos x satisfy the equation a.v(d u...

    Text Solution

    |

  14. If f(x)=log(x^(2))(logx),then f '(x)at x= e is

    Text Solution

    |

  15. Let f be a differentiable function satisfying [f(x)]^(n)=f(nx)" for ...

    Text Solution

    |

  16. If y=f(x) is an odd differentiable function defined on (-oo,oo) such t...

    Text Solution

    |

  17. "If "y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo))))," then prove that "(dy)/(...

    Text Solution

    |

  18. If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

    Text Solution

    |

  19. Let f(x)=x^2+xg^2(1)+g^''(2) and g(x)=f(1).x^2+xf'(x)+f''(x), then fin...

    Text Solution

    |

  20. if f(x) = x^n then the value of f(1) - (f'(1))/(1!) + (f''(1))/(2!) +...

    Text Solution

    |