Home
Class 12
MATHS
If f(x) is given by f(x)=(cosx+i sinx)...

If `f(x)` is given by
`f(x)=(cosx+i sinx)(cos3x+isin3x)`.........
.......`[cos(2n-1)x+isin(2n-1)x]`,
then f''(x) is equal to

A

`n^(3)f(x)`

B

`-n^(4)f(x)`

C

`-n^(2)f(x)`

D

`n^(4)f(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second derivative \( f''(x) \) of the function \[ f(x) = ( \cos x + i \sin x )( \cos 3x + i \sin 3x ) \cdots ( \cos (2n-1)x + i \sin (2n-1)x ) \] ### Step 1: Rewrite the function using Euler's formula Using Euler's formula, we can express \( \cos x + i \sin x \) as \( e^{ix} \). Therefore, we can rewrite \( f(x) \) as: \[ f(x) = e^{ix} \cdot e^{i3x} \cdots e^{i(2n-1)x} \] ### Step 2: Combine the exponents Since the bases are the same (all are \( e \)), we can add the exponents: \[ f(x) = e^{i(x + 3x + 5x + \ldots + (2n-1)x)} \] ### Step 3: Find the sum of the series The series \( x + 3x + 5x + \ldots + (2n-1)x \) is an arithmetic series where the first term \( a = x \) and the common difference \( d = 2x \). The number of terms \( n \) is \( n \). The sum of the first \( n \) terms of an arithmetic series is given by: \[ S_n = \frac{n}{2} \cdot (2a + (n-1)d) \] Substituting the values: \[ S_n = \frac{n}{2} \cdot (2x + (n-1) \cdot 2x) = \frac{n}{2} \cdot (2nx) = n^2 x \] ### Step 4: Substitute the sum back into the function Thus, we can rewrite \( f(x) \) as: \[ f(x) = e^{in^2 x} \] ### Step 5: Differentiate to find \( f'(x) \) Now we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx} e^{in^2 x} = in^2 e^{in^2 x} \] ### Step 6: Differentiate again to find \( f''(x) \) Now we differentiate \( f'(x) \): \[ f''(x) = \frac{d}{dx} (in^2 e^{in^2 x}) = in^2 \cdot in^2 e^{in^2 x} = -n^4 e^{in^2 x} \] ### Step 7: Final expression for \( f''(x) \) Thus, we have: \[ f''(x) = -n^4 e^{in^2 x} \] ### Conclusion The final result for \( f''(x) \) is: \[ f''(x) = -n^4 f(x) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise SOLVED EXAMPLES|7 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(cosx+isinx)(cos2x+isin2x)(cos3x+isin3x)......(cosn x+isinn x) and f(1)=1 ,then f^('')(1) is equal to

If f(x)=(cosx+isinx)(cos2x+isin2x)(cos3x+isin3x)ddot(cosn x+isinn x) and f(1)=1 , then f"(1) is equal to (n(n+1))/2 (b) {(n(n+1))/2}^2 (c) -{(n(n+1))/2}^2 (d) none of these

If f(x) = cos x\ cos 2x\ cos 2^2\ x\ cos 2^3 x\ ....cos2^(n-1) x and n gt 1, then f'(pi/2) is

If f(x)=(2-3cosx)/(sinx) , then f'((pi)/(4)) is equal to

The function f(x) given by f(x)=(sin 8x cos x-sin6x cos 3x)/(cos x cos2x-sin3x sin 4x) , is

int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C , then f(x) is equal to

If inte^(sinx).(xcos^(3)x-sinx)/(cos^(2)x)dx=e^(sinx)f(x)+C , such that f(0) =-1 then pi/3-f(pi/3) is equal to:

If f(x) = a(x^n +3), f(1) = 12, f(3) = 36 , then f(2) is equal to

If f(x)=|(0,x^2-sinx,cosx-2),(sinx-x^2,0,1-2x),(2-cosx,2x-1,0)|, then int f(x) dx is equal to

if f (x) = lim _(x to oo) (prod_(i=l)^(n ) cos ((x )/(2 ^(l)))) then f '(x) is equal to:

ARIHANT MATHS ENGLISH-DIFFERENTIATION -Exercise (More Than One Correct Option Type Questions)
  1. Let u/x a n dv(x) be differentiable functions such that (u(x))/(v(x))=...

    Text Solution

    |

  2. If f(x) =|log(e)|x||, then f'(x) equals

    Text Solution

    |

  3. If f(x) is given by f(x)=(cosx+i sinx)(cos3x+isin3x)......... .......

    Text Solution

    |

  4. Let f(x)=x^(n) , n being a non-negative integer, The value of n for w...

    Text Solution

    |

  5. If f(x)=sin{(pi)/(3)[x]-x^(2)}" for "2ltxlt3 and [x] denotes the grea...

    Text Solution

    |

  6. The function u=e^x sin x ; v=e^x cos x satisfy the equation a.v(d u...

    Text Solution

    |

  7. If f(x)=log(x^(2))(logx),then f '(x)at x= e is

    Text Solution

    |

  8. Let f be a differentiable function satisfying [f(x)]^(n)=f(nx)" for ...

    Text Solution

    |

  9. If y=f(x) is an odd differentiable function defined on (-oo,oo) such t...

    Text Solution

    |

  10. "If "y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo))))," then prove that "(dy)/(...

    Text Solution

    |

  11. If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

    Text Solution

    |

  12. Let f(x)=x^2+xg^2(1)+g^''(2) and g(x)=f(1).x^2+xf'(x)+f''(x), then fin...

    Text Solution

    |

  13. if f(x) = x^n then the value of f(1) - (f'(1))/(1!) + (f''(1))/(2!) +...

    Text Solution

    |

  14. If y+log(1+x)=0 which of the following is true?

    Text Solution

    |

  15. If y=2^(3^(x)), then y' equals

    Text Solution

    |

  16. If g is the inverse of fandf(x) = x^(2)+3x-3,(xgt0). then g'(1) equal...

    Text Solution

    |

  17. If x^(3)-2x^(2)y^(2)+5x+y-5=0 and y(1) = 1, then

    Text Solution

    |

  18. Let y=sqrt(x+sqrt(x+sqrt(x+oo))) , (dy)/(dx) is equal to (a)1/(2y-1)...

    Text Solution

    |

  19. Ify=x^((lnx)^ln(lnx)) , then (dy)/(dx) is equal to

    Text Solution

    |

  20. Which of the following functions are not derivable at x=0?

    Text Solution

    |