Home
Class 12
MATHS
If f(x)=sin{(pi)/(3)[x]-x^(2)}" for "2lt...

If `f(x)=sin{(pi)/(3)[x]-x^(2)}" for "2ltxlt3` and [x] denotes the greatest integer less than or equal to x, then `f'"("sqrt(pi//3)")"` is equal to

A

`sqrt(pi//3)`

B

`-sqrt(pi//3)`

C

`-sqrt(pi)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second derivative of the function \( f(x) = \sin\left(\frac{\pi}{3} [x] - x^2\right) \) at \( x = \sqrt{\frac{\pi}{3}} \), where \( [x] \) denotes the greatest integer less than or equal to \( x \). ### Step-by-Step Solution: 1. **Identify the function**: The function is given as: \[ f(x) = \sin\left(\frac{\pi}{3} [x] - x^2\right) \] For \( 2 < x < 3 \), we have \( [x] = 2 \). Hence, we can simplify the function: \[ f(x) = \sin\left(\frac{\pi}{3} \cdot 2 - x^2\right) = \sin\left(\frac{2\pi}{3} - x^2\right) \] 2. **Differentiate \( f(x) \)**: We will differentiate \( f(x) \) with respect to \( x \): \[ f'(x) = \frac{d}{dx} \left(\sin\left(\frac{2\pi}{3} - x^2\right)\right) \] Using the chain rule: \[ f'(x) = \cos\left(\frac{2\pi}{3} - x^2\right) \cdot \frac{d}{dx}\left(\frac{2\pi}{3} - x^2\right) \] The derivative of \( \frac{2\pi}{3} - x^2 \) is \( -2x \): \[ f'(x) = \cos\left(\frac{2\pi}{3} - x^2\right) \cdot (-2x) = -2x \cos\left(\frac{2\pi}{3} - x^2\right) \] 3. **Evaluate \( f'(\sqrt{\frac{\pi}{3}}) \)**: Now we substitute \( x = \sqrt{\frac{\pi}{3}} \): \[ f'\left(\sqrt{\frac{\pi}{3}}\right) = -2\sqrt{\frac{\pi}{3}} \cos\left(\frac{2\pi}{3} - \left(\sqrt{\frac{\pi}{3}}\right)^2\right) \] Since \( \left(\sqrt{\frac{\pi}{3}}\right)^2 = \frac{\pi}{3} \): \[ f'\left(\sqrt{\frac{\pi}{3}}\right) = -2\sqrt{\frac{\pi}{3}} \cos\left(\frac{2\pi}{3} - \frac{\pi}{3}\right) = -2\sqrt{\frac{\pi}{3}} \cos\left(\frac{\pi}{3}\right) \] We know that \( \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \): \[ f'\left(\sqrt{\frac{\pi}{3}}\right) = -2\sqrt{\frac{\pi}{3}} \cdot \frac{1}{2} = -\sqrt{\frac{\pi}{3}} \] 4. **Conclusion**: Therefore, the value of \( f'(\sqrt{\frac{\pi}{3}}) \) is: \[ f'(\sqrt{\frac{\pi}{3}}) = -\sqrt{\frac{\pi}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise SOLVED EXAMPLES|7 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cos{(pi)/(2)[x]-x^(3)},1ltxlt2 , and [x] denotes the greatest integer less than or equal to x, then the value of f'(root(3)((pi)/(2))) , is

Let [x] denotes the greatest integer less than or equal to x and f(x)=[tan^(2)x] . Then

If [x] denotes the greatest integer less than or equal to x, then the solutions of the equation 2x-2[x]=1 are

If f(x)=|x-1|-[x] , where [x] is the greatest integer less than or equal to x, then

Let [x] denotes the greatest integer less than or equal to x. If f(x) =[x sin pi x] , then f(x) is

The function f(x)=(tan |pi[x-pi]|)/(1+[x]^(2)) , where [x] denotes the greatest integer less than or equal to x, is

If f(x)=sin{(pi)/(2)[x]-x^(5)},1ltxlt2 and [.] denotes the greatest integer function, then f'(5sqrt((pi)/(2))) is equal to

If [x] denotes the greatest integer less than or equal to x and n in N , then f(X)= nx+n-[nx+n]+tan""(pix)/(2) , is

Let |x| be the greatest integer less than or equal to x, Then f(x)= x cos (pi (x+[x]) is continous at

Solve the equation x^(3)-[x]=3 , where [x] denotes the greatest integer less than or equal to x .

ARIHANT MATHS ENGLISH-DIFFERENTIATION -Exercise (More Than One Correct Option Type Questions)
  1. If f(x) is given by f(x)=(cosx+i sinx)(cos3x+isin3x)......... .......

    Text Solution

    |

  2. Let f(x)=x^(n) , n being a non-negative integer, The value of n for w...

    Text Solution

    |

  3. If f(x)=sin{(pi)/(3)[x]-x^(2)}" for "2ltxlt3 and [x] denotes the grea...

    Text Solution

    |

  4. The function u=e^x sin x ; v=e^x cos x satisfy the equation a.v(d u...

    Text Solution

    |

  5. If f(x)=log(x^(2))(logx),then f '(x)at x= e is

    Text Solution

    |

  6. Let f be a differentiable function satisfying [f(x)]^(n)=f(nx)" for ...

    Text Solution

    |

  7. If y=f(x) is an odd differentiable function defined on (-oo,oo) such t...

    Text Solution

    |

  8. "If "y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo))))," then prove that "(dy)/(...

    Text Solution

    |

  9. If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

    Text Solution

    |

  10. Let f(x)=x^2+xg^2(1)+g^''(2) and g(x)=f(1).x^2+xf'(x)+f''(x), then fin...

    Text Solution

    |

  11. if f(x) = x^n then the value of f(1) - (f'(1))/(1!) + (f''(1))/(2!) +...

    Text Solution

    |

  12. If y+log(1+x)=0 which of the following is true?

    Text Solution

    |

  13. If y=2^(3^(x)), then y' equals

    Text Solution

    |

  14. If g is the inverse of fandf(x) = x^(2)+3x-3,(xgt0). then g'(1) equal...

    Text Solution

    |

  15. If x^(3)-2x^(2)y^(2)+5x+y-5=0 and y(1) = 1, then

    Text Solution

    |

  16. Let y=sqrt(x+sqrt(x+sqrt(x+oo))) , (dy)/(dx) is equal to (a)1/(2y-1)...

    Text Solution

    |

  17. Ify=x^((lnx)^ln(lnx)) , then (dy)/(dx) is equal to

    Text Solution

    |

  18. Which of the following functions are not derivable at x=0?

    Text Solution

    |

  19. "Let "f(x)=(sqrt(x-2sqrt(x-1)))/(sqrt(x-1-1))x." Then"

    Text Solution

    |

  20. If 2^(x)+2^(y)=2^(x+y) then (dy)/(dx)is equal to

    Text Solution

    |