Home
Class 12
MATHS
If f(x)=|cosx-sinx| , then f'(pi/4) is e...

If `f(x)=|cosx-sinx| `, then `f'(pi/4)` is equal to

A

`sqrt2`

B

`-sqrt2`

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'\left(\frac{\pi}{4}\right) \) for the function \( f(x) = |\cos x - \sin x| \), we will follow these steps: ### Step 1: Determine the function behavior around \( x = \frac{\pi}{4} \) The first step is to analyze the expression inside the absolute value: \( \cos x - \sin x \). At \( x = \frac{\pi}{4} \): \[ \cos\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] Thus, \[ \cos\left(\frac{\pi}{4}\right) - \sin\left(\frac{\pi}{4}\right) = 0 \] ### Step 2: Determine the sign of \( \cos x - \sin x \) Next, we need to determine when \( \cos x - \sin x \) is positive or negative. - For \( x < \frac{\pi}{4} \): - \( \cos x > \sin x \) (since cosine starts higher than sine in the first quadrant). - For \( x > \frac{\pi}{4} \): - \( \cos x < \sin x \) (since sine starts to rise above cosine after \( \frac{\pi}{4} \)). ### Step 3: Define \( f(x) \) without the absolute value From the above analysis, we can express \( f(x) \) as: \[ f(x) = \begin{cases} \cos x - \sin x & \text{if } x < \frac{\pi}{4} \\ -(\cos x - \sin x) & \text{if } x > \frac{\pi}{4} \end{cases} \] At \( x = \frac{\pi}{4} \), we have \( f\left(\frac{\pi}{4}\right) = 0 \). ### Step 4: Differentiate \( f(x) \) Now we differentiate \( f(x) \) in both cases: 1. For \( x < \frac{\pi}{4} \): \[ f'(x) = -\sin x - \cos x \] 2. For \( x > \frac{\pi}{4} \): \[ f'(x) = -(-\sin x - \cos x) = \sin x + \cos x \] ### Step 5: Evaluate the derivative at \( x = \frac{\pi}{4} \) To find \( f'\left(\frac{\pi}{4}\right) \), we need to check the left-hand limit (LHL) and right-hand limit (RHL): - **Left-hand limit** as \( x \to \frac{\pi}{4}^- \): \[ f'\left(\frac{\pi}{4}^-\right) = -\sin\left(\frac{\pi}{4}\right) - \cos\left(\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = -\sqrt{2} \] - **Right-hand limit** as \( x \to \frac{\pi}{4}^+ \): \[ f'\left(\frac{\pi}{4}^+\right) = \sin\left(\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \sqrt{2} \] ### Step 6: Conclusion Since the left-hand limit and right-hand limit are not equal: \[ f'\left(\frac{\pi}{4}\right) \text{ does not exist.} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise SOLVED EXAMPLES|7 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|cosx-sinx| , then f'(pi/2) is equal to

If f(x) = |cosx| , then f'(pi/4) is equal to "……."

If f(x) = |cosx| , then f'(pi/4) is equal to "……."

If f(x)=(2-3cosx)/(sinx) , then f'((pi)/(4)) is equal to

If f(x)=|x|^(|sinx|) ,then f'((pi)/(4)) equals

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)

If A={x:(pi)/(6) lt x lt (pi)/(3)} and f(x) =cosx-x(1+x), then f(A) is equal to :

Range of the function f(x)=|sinx|cosx|+cosx|sinx|| is [a,b] then (a+b) is equal to

If 3f(cosx)+2f(sinx)=5x , then f^(')(cosx) is equal to (where f^(') denotes derivative with respect to x ) (A) −1/(cosx) (B) 1/(cosx) (C) -1/(sinx) (D) 1/(sinx)

If f(x)=|cosx-sinx| , find f^(prime)(pi/6) and f^(prime)(pi/3) .

ARIHANT MATHS ENGLISH-DIFFERENTIATION -Exercise (More Than One Correct Option Type Questions)
  1. The function u=e^x sin x ; v=e^x cos x satisfy the equation a.v(d u...

    Text Solution

    |

  2. If f(x)=log(x^(2))(logx),then f '(x)at x= e is

    Text Solution

    |

  3. Let f be a differentiable function satisfying [f(x)]^(n)=f(nx)" for ...

    Text Solution

    |

  4. If y=f(x) is an odd differentiable function defined on (-oo,oo) such t...

    Text Solution

    |

  5. "If "y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo))))," then prove that "(dy)/(...

    Text Solution

    |

  6. If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

    Text Solution

    |

  7. Let f(x)=x^2+xg^2(1)+g^''(2) and g(x)=f(1).x^2+xf'(x)+f''(x), then fin...

    Text Solution

    |

  8. if f(x) = x^n then the value of f(1) - (f'(1))/(1!) + (f''(1))/(2!) +...

    Text Solution

    |

  9. If y+log(1+x)=0 which of the following is true?

    Text Solution

    |

  10. If y=2^(3^(x)), then y' equals

    Text Solution

    |

  11. If g is the inverse of fandf(x) = x^(2)+3x-3,(xgt0). then g'(1) equal...

    Text Solution

    |

  12. If x^(3)-2x^(2)y^(2)+5x+y-5=0 and y(1) = 1, then

    Text Solution

    |

  13. Let y=sqrt(x+sqrt(x+sqrt(x+oo))) , (dy)/(dx) is equal to (a)1/(2y-1)...

    Text Solution

    |

  14. Ify=x^((lnx)^ln(lnx)) , then (dy)/(dx) is equal to

    Text Solution

    |

  15. Which of the following functions are not derivable at x=0?

    Text Solution

    |

  16. "Let "f(x)=(sqrt(x-2sqrt(x-1)))/(sqrt(x-1-1))x." Then"

    Text Solution

    |

  17. If 2^(x)+2^(y)=2^(x+y) then (dy)/(dx)is equal to

    Text Solution

    |

  18. For the function y=f(x)=(x^(2)+bx+c)e^(x), which of the following hold...

    Text Solution

    |

  19. If sqrt(y+x)+sqrt(y-x)=c, where cne0, then (dy)/(dx) has the value equ...

    Text Solution

    |

  20. If y = tan x tan 2x tan 3x, (sin 12x != 0) then dy / dx has the value ...

    Text Solution

    |