Home
Class 12
MATHS
If sqrt(y+x)+sqrt(y-x)=c, where cne0, th...

If `sqrt(y+x)+sqrt(y-x)=c,` where `cne0`, then `(dy)/(dx)` has the value equal to

A

`(2x)/(e^(2))`

B

`(x)/(y+sqrt(y^(2)-x^(2)))`

C

`(y-sqrt(y^(2)-x^(2)))/(x)`

D

`(c^(2))/(2y)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the equation \(\sqrt{y+x} + \sqrt{y-x} = c\), where \(c \neq 0\), we will differentiate both sides with respect to \(x\). ### Step-by-Step Solution: 1. **Differentiate Both Sides**: \[ \frac{d}{dx}(\sqrt{y+x}) + \frac{d}{dx}(\sqrt{y-x}) = \frac{d}{dx}(c) \] Since \(c\) is a constant, its derivative is 0: \[ \frac{d}{dx}(\sqrt{y+x}) + \frac{d}{dx}(\sqrt{y-x}) = 0 \] 2. **Apply the Chain Rule**: For \(\sqrt{y+x}\): \[ \frac{1}{2\sqrt{y+x}} \left( \frac{dy}{dx} + 1 \right) \] For \(\sqrt{y-x}\): \[ \frac{1}{2\sqrt{y-x}} \left( \frac{dy}{dx} - 1 \right) \] Therefore, we have: \[ \frac{1}{2\sqrt{y+x}} \left( \frac{dy}{dx} + 1 \right) + \frac{1}{2\sqrt{y-x}} \left( \frac{dy}{dx} - 1 \right) = 0 \] 3. **Combine the Terms**: \[ \frac{1}{2\sqrt{y+x}} \left( \frac{dy}{dx} + 1 \right) + \frac{1}{2\sqrt{y-x}} \left( \frac{dy}{dx} - 1 \right) = 0 \] Multiplying through by \(2\) to eliminate the fraction: \[ \frac{1}{\sqrt{y+x}} \left( \frac{dy}{dx} + 1 \right) + \frac{1}{\sqrt{y-x}} \left( \frac{dy}{dx} - 1 \right) = 0 \] 4. **Distribute and Rearrange**: \[ \frac{1}{\sqrt{y+x}} \frac{dy}{dx} + \frac{1}{\sqrt{y+x}} + \frac{1}{\sqrt{y-x}} \frac{dy}{dx} - \frac{1}{\sqrt{y-x}} = 0 \] Combine the \(\frac{dy}{dx}\) terms: \[ \left( \frac{1}{\sqrt{y+x}} + \frac{1}{\sqrt{y-x}} \right) \frac{dy}{dx} + \left( \frac{1}{\sqrt{y+x}} - \frac{1}{\sqrt{y-x}} \right) = 0 \] 5. **Isolate \(\frac{dy}{dx}\)**: \[ \left( \frac{1}{\sqrt{y+x}} + \frac{1}{\sqrt{y-x}} \right) \frac{dy}{dx} = -\left( \frac{1}{\sqrt{y+x}} - \frac{1}{\sqrt{y-x}} \right) \] Thus, \[ \frac{dy}{dx} = -\frac{\frac{1}{\sqrt{y+x}} - \frac{1}{\sqrt{y-x}}}{\frac{1}{\sqrt{y+x}} + \frac{1}{\sqrt{y-x}}} \] 6. **Simplify the Expression**: To simplify, multiply numerator and denominator by \(\sqrt{y+x} \cdot \sqrt{y-x}\): \[ \frac{dy}{dx} = -\frac{\sqrt{y-x} - \sqrt{y+x}}{\sqrt{y-x} + \sqrt{y+x}} \] ### Final Answer: \[ \frac{dy}{dx} = -\frac{\sqrt{y-x} - \sqrt{y+x}}{\sqrt{y-x} + \sqrt{y+x}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise SOLVED EXAMPLES|7 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If sqrt(x/y)+sqrt(y/x)=1 , then dy/dx

sqrt(x+y)+sqrt(y-x)=c , then (d^2y)/(dx^2) equals

If sqrt(x+y)+sqrt(y-x)=2 , then the value of (d^(2)y)/(dx^(2)) is equal to

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then (dy)/(dx) equals

if y=sqrt(x) + 1/sqrt(x) , then (dy)/(dx) at x=1 is equal to

If y = sqrt(sinx+y) , then (dy)/(dx) is equal to

If y = sqrt(sinx+y) , then (dy)/(dx) is equal to

If y=e^(sqrt(x))+e^(-sqrt(x))," then "(dy)/(dx) is equal to

If (x+sqrt(1+x^(2))) (y+sqrt(1+y^(2))) =1 then (dy)/(dx) may be equals to

y=2^(sqrt(x)) then (dy)/(dx) is

ARIHANT MATHS ENGLISH-DIFFERENTIATION -Exercise (More Than One Correct Option Type Questions)
  1. The function u=e^x sin x ; v=e^x cos x satisfy the equation a.v(d u...

    Text Solution

    |

  2. If f(x)=log(x^(2))(logx),then f '(x)at x= e is

    Text Solution

    |

  3. Let f be a differentiable function satisfying [f(x)]^(n)=f(nx)" for ...

    Text Solution

    |

  4. If y=f(x) is an odd differentiable function defined on (-oo,oo) such t...

    Text Solution

    |

  5. "If "y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo))))," then prove that "(dy)/(...

    Text Solution

    |

  6. If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

    Text Solution

    |

  7. Let f(x)=x^2+xg^2(1)+g^''(2) and g(x)=f(1).x^2+xf'(x)+f''(x), then fin...

    Text Solution

    |

  8. if f(x) = x^n then the value of f(1) - (f'(1))/(1!) + (f''(1))/(2!) +...

    Text Solution

    |

  9. If y+log(1+x)=0 which of the following is true?

    Text Solution

    |

  10. If y=2^(3^(x)), then y' equals

    Text Solution

    |

  11. If g is the inverse of fandf(x) = x^(2)+3x-3,(xgt0). then g'(1) equal...

    Text Solution

    |

  12. If x^(3)-2x^(2)y^(2)+5x+y-5=0 and y(1) = 1, then

    Text Solution

    |

  13. Let y=sqrt(x+sqrt(x+sqrt(x+oo))) , (dy)/(dx) is equal to (a)1/(2y-1)...

    Text Solution

    |

  14. Ify=x^((lnx)^ln(lnx)) , then (dy)/(dx) is equal to

    Text Solution

    |

  15. Which of the following functions are not derivable at x=0?

    Text Solution

    |

  16. "Let "f(x)=(sqrt(x-2sqrt(x-1)))/(sqrt(x-1-1))x." Then"

    Text Solution

    |

  17. If 2^(x)+2^(y)=2^(x+y) then (dy)/(dx)is equal to

    Text Solution

    |

  18. For the function y=f(x)=(x^(2)+bx+c)e^(x), which of the following hold...

    Text Solution

    |

  19. If sqrt(y+x)+sqrt(y-x)=c, where cne0, then (dy)/(dx) has the value equ...

    Text Solution

    |

  20. If y = tan x tan 2x tan 3x, (sin 12x != 0) then dy / dx has the value ...

    Text Solution

    |