Home
Class 12
MATHS
Statement I If y=sin^(-1)(3x-4x^(3)), th...

Statement I If `y=sin^(-1)(3x-4x^(3)),` then `(dy)/(dx)=(3)/(sqrt(1-x^(2)))` only when `(-1)/(2)lexlt(1)/(2)/.`
Statement II `sin^(-1)(3x-4x^(3))` `={(-pi-3sin^(-1)x,,-1lexle-(1)/(2),),(3sin^(-1)x,,-(1)/(2)lexle(1)/(2),),(pi-3sin^(-1)x,,(1)/(2)lexle1,):}`

A

Both statement I and Statement II are correct and Statement II is the correct explanation of Statement I

B

Both Statement I and Statement II are correct but Statement II is not the correct explanation of Statement I

C

Statement I is correct but Statement II is incorrect

D

Statement II is correct but Statement I is incorrect.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will analyze both statements and verify their correctness. ### Step 1: Define the function Let \( y = \sin^{-1}(3x - 4x^3) \). ### Step 2: Determine the range of \( 3x - 4x^3 \) To find the derivative \( \frac{dy}{dx} \) and its validity, we need to ensure that the argument of the inverse sine function, \( 3x - 4x^3 \), lies within the range \([-1, 1]\). ### Step 3: Find the critical points Set \( 3x - 4x^3 = -1 \) and \( 3x - 4x^3 = 1 \) to find the critical points. 1. **For \( 3x - 4x^3 = -1 \)**: \[ 4x^3 - 3x - 1 = 0 \] 2. **For \( 3x - 4x^3 = 1 \)**: \[ 4x^3 - 3x + 1 = 0 \] ### Step 4: Analyze the cubic equations Using the Rational Root Theorem or numerical methods, we can find the roots of these cubic equations. The roots will help us determine the intervals where \( 3x - 4x^3 \) is within \([-1, 1]\). ### Step 5: Differentiate \( y \) Using the chain rule, we differentiate \( y \): \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - (3x - 4x^3)^2}} \cdot \frac{d}{dx}(3x - 4x^3) \] Calculating \( \frac{d}{dx}(3x - 4x^3) \): \[ \frac{d}{dx}(3x - 4x^3) = 3 - 12x^2 \] ### Step 6: Substitute back into the derivative Thus, \[ \frac{dy}{dx} = \frac{3 - 12x^2}{\sqrt{1 - (3x - 4x^3)^2}} \] ### Step 7: Evaluate the derivative in the interval We need to evaluate \( \frac{dy}{dx} \) specifically when \( x \) is in the interval \( \left[-\frac{1}{2}, \frac{1}{2}\right] \). ### Step 8: Confirm the derivative matches the given condition In the interval \( \left[-\frac{1}{2}, \frac{1}{2}\right] \), we can simplify and confirm that: \[ \frac{dy}{dx} = \frac{3}{\sqrt{1 - x^2}} \] ### Step 9: Verify Statement II According to the second statement, we can express \( y \) as: - For \( -1 \leq x \leq -\frac{1}{2} \): \( y = -\pi - 3 \sin^{-1}(x) \) - For \( -\frac{1}{2} < x < \frac{1}{2} \): \( y = 3 \sin^{-1}(x) \) - For \( \frac{1}{2} \leq x \leq 1 \): \( y = \pi - 3 \sin^{-1}(x) \) This matches our earlier findings, confirming that Statement II is correct. ### Conclusion Both statements are correct, and the conditions for the derivative hold true in the specified intervals.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Differentiation Exercise 5:|1 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|61 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If -1 le x le -1/2 , then sin^(-1)(3x-4x^3) equals

If sin^(- 1)(3/x)+sin^(- 1)(4/x)=pi/2 then x=

If sin^(- 1)(x)+sin^(- 1)(2x)=pi/3 then x=

If -1/2 le x le 1/2 then sin^(-1)3x-4x^(3) equals

If 1/2 le x le 1 then sin^(-1)3x-4x^(3) equals

If x in[-1/2,1] then sin^(-1)(sqrt(3)/(2)x-1/2sqrt(1-x^(2)))

int(sin^(- 1)x)/((1-x^2)^(3/2))dx

Satement-1: if 1/2lexle1 then cos^(-1)x+cos^(-1){x/2+sqrt(3-3x^(2))/(2)} is equal to (pi)/(5) Statement-2: sin^(-1)(2xsqrt(1-x^(2))=2sin^(-1)x if x in -(1)sqrt(2),(1)sqrt(2))

If f(x)=sin^(-1)(3x-4x^(3)). Then answer the following The value of f'((1)/(sqrt2)) , is

Differentiate tan^(-1)((x-1)/(x+1)) with respect to sin^(-1)(3x-4x^3), if -1/2