Home
Class 12
MATHS
If y=cos^(-1)((1-x^(2))/(1+x^(2))), then...

If `y=cos^(-1)((1-x^(2))/(1+x^(2))),` then
Statement I `(dy)/(dx)=(2)/(1+x^(2))` for `x"inR`
Statement II `cos^(-1)((1-x^(2))/(1+x^(2)))={(2tan^(-1)x,,xge0,),(-2tan^(-1)x,,xlt0,):}`

A

Both statement I and Statement II are correct and Statement II is the correct explanation of Statement I

B

Both Statement I and Statement II are correct but Statement II is not the correct explanation of Statement I

C

Statement I is correct but Statement II is incorrect

D

Statement II is correct but Statement I is incorrect.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given function: \[ y = \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) \] ### Step 1: Differentiate the function To find \(\frac{dy}{dx}\), we will use the chain rule. The derivative of \(\cos^{-1}(u)\) is given by: \[ \frac{d}{du}(\cos^{-1}(u)) = -\frac{1}{\sqrt{1 - u^2}} \] Let \( u = \frac{1 - x^2}{1 + x^2} \). We need to find \(\frac{du}{dx}\). ### Step 2: Differentiate \(u\) Using the quotient rule, we have: \[ u = \frac{1 - x^2}{1 + x^2} \] Let \( f(x) = 1 - x^2 \) and \( g(x) = 1 + x^2 \). Then, by the quotient rule: \[ \frac{du}{dx} = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2} \] Calculating \(f'(x)\) and \(g'(x)\): - \(f'(x) = -2x\) - \(g'(x) = 2x\) Now substituting back: \[ \frac{du}{dx} = \frac{(1 + x^2)(-2x) - (1 - x^2)(2x)}{(1 + x^2)^2} \] Simplifying the numerator: \[ = \frac{-2x - 2x^3 - 2x + 2x^3}{(1 + x^2)^2} = \frac{-4x}{(1 + x^2)^2} \] ### Step 3: Substitute back into the derivative of \(y\) Now substituting \(u\) and \(\frac{du}{dx}\) into the derivative of \(y\): \[ \frac{dy}{dx} = -\frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx} \] ### Step 4: Calculate \(1 - u^2\) We need to calculate \(1 - u^2\): \[ u^2 = \left(\frac{1 - x^2}{1 + x^2}\right)^2 = \frac{(1 - x^2)^2}{(1 + x^2)^2} \] Thus, \[ 1 - u^2 = 1 - \frac{(1 - x^2)^2}{(1 + x^2)^2} = \frac{(1 + x^2)^2 - (1 - x^2)^2}{(1 + x^2)^2} \] Calculating the numerator: \[ (1 + x^2)^2 - (1 - x^2)^2 = (1 + 2x^2 + x^4) - (1 - 2x^2 + x^4) = 4x^2 \] So, \[ 1 - u^2 = \frac{4x^2}{(1 + x^2)^2} \] ### Step 5: Substitute back into \(\frac{dy}{dx}\) Now substituting \(1 - u^2\): \[ \frac{dy}{dx} = -\frac{1}{\sqrt{\frac{4x^2}{(1 + x^2)^2}}} \cdot \frac{-4x}{(1 + x^2)^2} \] Calculating \(\sqrt{1 - u^2}\): \[ \sqrt{1 - u^2} = \frac{2|x|}{1 + x^2} \] Thus, \[ \frac{dy}{dx} = \frac{4x}{(1 + x^2)^2} \cdot \frac{1 + x^2}{2|x|} = \frac{2}{1 + x^2} \] ### Conclusion Thus, we have: \[ \frac{dy}{dx} = \frac{2}{1 + x^2} \quad \text{for } x \geq 0 \] \[ \frac{dy}{dx} = -\frac{2}{1 + x^2} \quad \text{for } x < 0 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Differentiation Exercise 5:|1 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|61 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If y= "tan"^(-1) (2x)/(1-x^(2)) , prove that (dy)/(dx)= (2)/(1 + x^(2))

(1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x)

Solve for x :tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,x >0

y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1 . find dy/dx

If y= tan ^(-1) ((x)/(1+ sqrt(1- x ^(2)))), |x|le 1, then (dy)/(dx) at ((1)/(2)) is:

Statement I int((1)/(1+x^(4)))dx=tan^(-1)(x^(2))+C Statement II int(1)/(1+x^(2))dx=tan^(-1)x +C

(1+x^(2))tan^(-1)x*(dy)/(dx)+2=0

The formula "cos"^(-1)(1-x^(2))/(1+x^(2))=2tan^(-1)x holds only for :

If y=sin^(-1)((1-x^2)/(1+x^2))+cos^(-1)((1-x^2)/(1+x^2)) , find (dy)/(dx) .

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then