Home
Class 12
MATHS
Let the derivative of f(x) be defined as...

Let the derivative of `f(x)` be defined as `D^(**)f(x)=lim_(hrarr0)(f^(2)x+h-f^(2)(x))/(h),` where `f^(2)(x)={f(x)}^(2)`.
If `u=f(x),v=g(x)`, then the value of `D^(**)(u.v)` is

A

(a)`(D^(**)u)v+(D^(**)v)u`

B

(b)`u^(2)(D^(**)v)+v^(2)(D^(**)u)`

C

(c)`D^(**)u+D^(**)v`

D

(d)`uvD^(**)(u+v)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( D^{**}(u \cdot v) \) where \( u = f(x) \) and \( v = g(x) \), we start with the definition of the derivative given in the problem: \[ D^{**}f(x) = \lim_{h \to 0} \frac{f^{(2)}(x+h) - f^{(2)}(x)}{h} \] where \( f^{(2)}(x) = (f(x))^2 \). ### Step 1: Write the expression for \( D^{**}(u \cdot v) \) Using the definition, we have: \[ D^{**}(u \cdot v) = D^{**}(f(x) \cdot g(x)) = \lim_{h \to 0} \frac{(f(x+h) \cdot g(x+h))^2 - (f(x) \cdot g(x))^2}{h} \] ### Step 2: Expand the square in the numerator Using the identity \( a^2 - b^2 = (a-b)(a+b) \): Let \( a = f(x+h) \cdot g(x+h) \) and \( b = f(x) \cdot g(x) \): \[ D^{**}(u \cdot v) = \lim_{h \to 0} \frac{(f(x+h) \cdot g(x+h) - f(x) \cdot g(x)) \cdot (f(x+h) \cdot g(x+h) + f(x) \cdot g(x))}{h} \] ### Step 3: Simplify \( (f(x+h) \cdot g(x+h) - f(x) \cdot g(x)) \) Using the product rule: \[ f(x+h) \cdot g(x+h) - f(x) \cdot g(x) = f(x+h) \cdot g(x+h) - f(x) \cdot g(x+h) + f(x) \cdot g(x+h) - f(x) \cdot g(x) \] This can be rewritten as: \[ = (f(x+h) - f(x)) \cdot g(x+h) + f(x) \cdot (g(x+h) - g(x)) \] ### Step 4: Substitute back into the limit Now substituting back into the limit gives: \[ D^{**}(u \cdot v) = \lim_{h \to 0} \frac{[(f(x+h) - f(x)) \cdot g(x+h) + f(x) \cdot (g(x+h) - g(x))] \cdot (f(x+h) \cdot g(x+h) + f(x) \cdot g(x))}{h} \] ### Step 5: Apply the limit As \( h \to 0 \): 1. \( f(x+h) \to f(x) \) 2. \( g(x+h) \to g(x) \) Thus, we can express the limit as: \[ D^{**}(u \cdot v) = \lim_{h \to 0} \left( \frac{(f(x+h) - f(x))}{h} \cdot g(x) + f(x) \cdot \frac{(g(x+h) - g(x))}{h} \right) \cdot (2f(x)g(x)) \] This leads to: \[ D^{**}(u \cdot v) = 2f(x)g(x) \left( D^{*}f(x) + D^{*}g(x) \right) \] ### Conclusion Thus, we can conclude that: \[ D^{**}(u \cdot v) = u^2 D^{*}v + v^2 D^{*}u \] ### Final Answer The value of \( D^{**}(u \cdot v) \) is: \[ D^{**}(u \cdot v) = u^2 D^{*}v + v^2 D^{*}u \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Differentiation Exercise 5:|1 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|14 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Let the derivative of f(x) be defined as D^(**)f(x)=lim_(hto0)(f^(2)x+h-f^(2)(x))/(h), where f^(2)(x)={f(x)}^(2) . If u=f(x),v=g(x) , then the value of D^(**)((u)/(v)) is.

Instead of the usual definition of derivative Df(x), if we define a new kind of derivative D^*F(x) by the formula D*f(x)=lim_(h->0)(f^2(x+h)-f^2(x))/h ,w h e r ef^2(x) mean [f(x)]^2 and if f(x)=xlogx ,then D^*f(x)|_(x=e) has the value (A)e (B) 2e (c) 4e (d) none of these

Let f(x)=x^(2)-2xandg(x)=f(f(x)-1)+f(5-f(x)), then

If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}] . Then the value of f(x).g(x).h(x) is

Left hand derivative and right hand derivative of a function f(x) at a point x=a are defined as f'(a^-)=lim_(hrarr0^(+))(f(a)-f(a-h))/(h) =lim_(hrarr0^(+))(f(a+h)-f(a))/(h) andf'(a^(+))=lim_(hrarr0^(+))(f(a+h)-f(a))/(h) =lim_(hrarr0^(+))(f(a)-f(a+h))/(h) =lim_(hrarr0^(+)) (f(a)-f(x))/(a-x) respectively. Let f be a twice differentiable function. We also know that derivative of a even function is odd function and derivative of an odd function is even function. If f is even function, which of the following is right hand derivative of f' at x=a?

Let f(x)=(3)/(4)x+1,f^(n)(x) be defined as f^(2)(x)=f(f(x)), and for n ge 2, f^(n+1)(x)=f(f^(n)(x))." If " lambda =lim_(n to oo) f^(n)(x), then

Let f(a)=g(a)=k and their nth derivatives exist and be not equal for some n. If lim_(xtoa) (f(a)g(x)-f(a)-g(a)f(x)+g(a))/(g(x)-f(x))=4 then find the value of k.

Let f (x) and g (x) be two differentiable functions, defined as: f (x)=x ^(2) +xg'(1)+g'' (2) and g (x)= f (1) x^(2) +x f' (x)+ f''(x). The value of f (1) +g (-1) is:

"If "f(x)=lim_(hrarr0) ((sin(x+h))^(log_(e)(x+h))-(sin x)^(log_(e)x))/(h)" then find "f(pi//2).

"If "f(x)=lim_(hrarr0) ((sin(x+h))^(log_(e)(x+h))-(sin x)^(log_(e)x))/(h)" then find "f(pi//2).