Home
Class 12
MATHS
Let the derivative of f(x) be defined as...

Let the derivative of `f(x)` be defined as `D^(**)f(x)=lim_(hto0)(f^(2)x+h-f^(2)(x))/(h),` where `f^(2)(x)={f(x)}^(2)`.
If `u=f(x),v=g(x)`, then the value of `D^(**)((u)/(v))` is.

A

`(u^(2)(D^(**)v)-v^(2)(D^(**)u))/(v^(4))`

B

`(u(D^(**)v)-v(D^(**)u))/(v^(2))`

C

`(v^(2)(D^(**)u)-u^(2)(D^(**)v))/(v^(4))`

D

`(v(D^(**)u)-u(D^(**)v))/(v^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( D^{**} \left( \frac{u}{v} \right) \), where \( u = f(x) \) and \( v = g(x) \). The derivative \( D^{**} f(x) \) is defined as: \[ D^{**} f(x) = \lim_{h \to 0} \frac{f^2(x + h) - f^2(x)}{h} \] ### Step-by-Step Solution: 1. **Express the derivative of \( \frac{u}{v} \)**: We start by applying the definition of the derivative to \( \frac{u}{v} \): \[ D^{**} \left( \frac{u}{v} \right) = \lim_{h \to 0} \frac{\left( \frac{u}{v} \right)^2 (x + h) - \left( \frac{u}{v} \right)^2 (x)}{h} \] 2. **Rewrite the expression**: Using the property of limits, we can rewrite the expression: \[ = \lim_{h \to 0} \frac{\frac{u^2(x + h)}{v^2(x + h)} - \frac{u^2(x)}{v^2(x)}}{h} \] 3. **Combine the fractions**: Combine the fractions in the numerator: \[ = \lim_{h \to 0} \frac{u^2(x + h) v^2(x) - u^2(x) v^2(x + h)}{h \cdot v^2(x + h) v^2(x)} \] 4. **Factor the numerator**: We can factor the numerator: \[ = \lim_{h \to 0} \frac{(u^2(x + h) - u^2(x)) v^2(x) + u^2(x)(v^2(x) - v^2(x + h))}{h \cdot v^2(x + h) v^2(x)} \] 5. **Apply the limit**: Now we can apply the limit: \[ = \frac{v^2(x) \cdot D^{**}(u^2) - u^2(x) \cdot D^{**}(v^2)}{v^4(x)} \] 6. **Final expression**: Therefore, we have: \[ D^{**} \left( \frac{u}{v} \right) = \frac{v^2(x) D^{**}(u) - u^2(x) D^{**}(v)}{v^4(x)} \] ### Conclusion: Thus, the value of \( D^{**} \left( \frac{u}{v} \right) \) is given by: \[ D^{**} \left( \frac{u}{v} \right) = \frac{g^2(x) D^{**}(f) - f^2(x) D^{**}(g)}{g^4(x)} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Differentiation Exercise 5:|1 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|14 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Let the derivative of f(x) be defined as D^(**)f(x)=lim_(hrarr0)(f^(2)x+h-f^(2)(x))/(h), where f^(2)(x)={f(x)}^(2) . If u=f(x),v=g(x) , then the value of D^(**)(u.v) is

Instead of the usual definition of derivative Df(x), if we define a new kind of derivative D^*F(x) by the formula D*f(x)=lim_(h->0)(f^2(x+h)-f^2(x))/h ,w h e r ef^2(x) mean [f(x)]^2 and if f(x)=xlogx ,then D^*f(x)|_(x=e) has the value (A)e (B) 2e (c) 4e (d) none of these

Let f(x)=x^(2)-2xandg(x)=f(f(x)-1)+f(5-f(x)), then

If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}] . Then the value of f(x).g(x).h(x) is

Let f(a)=g(a)=k and their nth derivatives exist and be not equal for some n. If lim_(xtoa) (f(a)g(x)-f(a)-g(a)f(x)+g(a))/(g(x)-f(x))=4 then find the value of k.

Let f(x)=(3)/(4)x+1,f^(n)(x) be defined as f^(2)(x)=f(f(x)), and for n ge 2, f^(n+1)(x)=f(f^(n)(x))." If " lambda =lim_(n to oo) f^(n)(x), then

If f(x) is derivable at x=5, f'(5)=4 , then evaluate lim_(hto0)(f(5+h^(3))-f(5-h^(3)))/(2h^(3)

If f(x) is derivable at x=3 and f'(3)=2 , then value of lim_(hto0)(f(3+h^(2))-f(3-h^(2)))/(2h^(2)) is less than

Left hand derivative and right hand derivative of a function f(x) at a point x=a are defined as f'(a^-)=lim_(hrarr0^(+))(f(a)-f(a-h))/(h) =lim_(hrarr0^(+))(f(a+h)-f(a))/(h) andf'(a^(+))=lim_(hrarr0^(+))(f(a+h)-f(a))/(h) =lim_(hrarr0^(+))(f(a)-f(a+h))/(h) =lim_(hrarr0^(+)) (f(a)-f(x))/(a-x) respectively. Let f be a twice differentiable function. We also know that derivative of a even function is odd function and derivative of an odd function is even function. If f is even function, which of the following is right hand derivative of f' at x=a?

Let f (x) and g (x) be two differentiable functions, defined as: f (x)=x ^(2) +xg'(1)+g'' (2) and g (x)= f (1) x^(2) +x f' (x)+ f''(x). The value of f (1) +g (-1) is: