Home
Class 12
MATHS
Let f(x)=sin^(-1)((2x+2)/(sqrt(4x^(2)+8x...

Let `f(x)=sin^(-1)((2x+2)/(sqrt(4x^(2)+8x+13)))`, then the value of `(d(tanf(x)))/(d(tan^(-1)x))`, when `x=(1)/(2),` is..........

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{d(\tan(f(x)))}{d(\tan^{-1}(x))}\) when \(x = \frac{1}{2}\), given that \(f(x) = \sin^{-1}\left(\frac{2x + 2}{\sqrt{4x^2 + 8x + 13}}\right)\). ### Step-by-Step Solution: 1. **Define the function**: \[ f(x) = \sin^{-1}\left(\frac{2x + 2}{\sqrt{4x^2 + 8x + 13}}\right) \] 2. **Set \(f(x) = \theta\)**: \[ \theta = f(x) \implies \sin(\theta) = \frac{2x + 2}{\sqrt{4x^2 + 8x + 13}} \] 3. **Use a right triangle to express \(\tan(\theta)\)**: - Let the opposite side (perpendicular) be \(2x + 2\) and the hypotenuse be \(\sqrt{4x^2 + 8x + 13}\). - By Pythagorean theorem, the base can be calculated: \[ \text{hypotenuse}^2 = \text{perpendicular}^2 + \text{base}^2 \] \[ 4x^2 + 8x + 13 = (2x + 2)^2 + b^2 \] Expanding the right side: \[ 4x^2 + 8x + 4 + b^2 = 4x^2 + 8x + 13 \] Simplifying gives: \[ b^2 = 9 \implies b = 3 \] 4. **Calculate \(\tan(\theta)\)**: \[ \tan(\theta) = \frac{\text{perpendicular}}{\text{base}} = \frac{2x + 2}{3} \] 5. **Express \(f(x)\) in terms of \(\tan\)**: \[ f(x) = \tan^{-1}\left(\frac{2x + 2}{3}\right) \] 6. **Differentiate \(\tan(f(x))\)**: Using the chain rule: \[ \frac{d}{dx}(\tan(f(x))) = \sec^2(f(x)) \cdot f'(x) \] 7. **Differentiate \(\tan^{-1}(x)\)**: \[ \frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1 + x^2} \] 8. **Combine results**: \[ \frac{d(\tan(f(x)))}{d(\tan^{-1}(x))} = \frac{\sec^2(f(x)) \cdot f'(x)}{\frac{1}{1 + x^2}} = \sec^2(f(x)) \cdot f'(x) \cdot (1 + x^2) \] 9. **Calculate \(f'(x)\)**: Using the derivative of \(\tan^{-1}\): \[ f'(x) = \frac{2}{3(1 + x^2)} \] 10. **Evaluate at \(x = \frac{1}{2}\)**: - First, calculate \(f\left(\frac{1}{2}\right)\): \[ f\left(\frac{1}{2}\right) = \tan^{-1}\left(\frac{2 \cdot \frac{1}{2} + 2}{3}\right) = \tan^{-1(1)} \] Hence, \(\sec^2(f(\frac{1}{2})) = \sec^2\left(\frac{\pi}{4}\right) = 2\). - Now, substitute \(x = \frac{1}{2}\) into \(f'(x)\): \[ f'\left(\frac{1}{2}\right) = \frac{2}{3(1 + \left(\frac{1}{2}\right)^2)} = \frac{2}{3(1 + \frac{1}{4})} = \frac{2}{3 \cdot \frac{5}{4}} = \frac{8}{15} \] 11. **Final Calculation**: \[ \frac{d(\tan(f(x)))}{d(\tan^{-1}(x))} = 2 \cdot \frac{8}{15} \cdot \left(1 + \left(\frac{1}{2}\right)^2\right) = 2 \cdot \frac{8}{15} \cdot \frac{5}{4} = \frac{80}{60} = \frac{4}{3} \] ### Final Answer: The value of \(\frac{d(\tan(f(x)))}{d(\tan^{-1}(x))}\) when \(x = \frac{1}{2}\) is \(\frac{4}{3}\).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Differentiation Exercise 5:|1 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Evaluate: intsin^(-1)((2x+2)/(sqrt(4x^2+8x+13)))dx

Evaluate: intsin^(-1)((2x+2)/(sqrt(4x^2+8x+13)))dx

Evaluate: intsin^(-1)((2x+2)/(sqrt(4x^2+8x+13)))dx

Let f(x) = tan^(-1)(((x-2))/(x^(2)+2x+2)) ,then 26 f'(1) is

Let f(x)=2x-tan^-1 x- ln(x+sqrt(1+x^2)); x in R, then

The value of tan((sin^(-1)x+cos^(-1)x)/(2)) , when x = (sqrt(3))/(2) , is "……." .

The value of tan((sin^(-1)x+cos^(-1)x)/(2)) , when x = (sqrt(3))/(2) , is "……." .

f(x)=sqrt(1-sin^(2)x)+sqrt(1+tan^(2)x) then

If f(x)=tan^(-1)sqrt(x^(2)+4x) +sin^(-1)sqrt(x^(2)+4x+1)

Let f (x) =cos ^(-1) ((1-tan ^(2)(x//2))/(1+ tan ^(2) (x//2))) . Solve for f(x).